Author: Rhein, Bethany A.; Powers, Linda S.; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K.; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A.; Monick, Martha M.; Maury, Wendy
Title: Interferon-γ Inhibits Ebola Virus Infection Cord-id: 10bu7iwg Document date: 2015_11_12
ID: 10bu7iwg
Snippet: Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furt
Document: Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.
Search related documents:
Co phrase search for related documents- absence presence and adaptive immune response: 1, 2
- absence presence and adaptive immune system: 1
- absence presence and adaptive immune system activation: 1
- absence presence and additional cell: 1, 2, 3
- absence presence and adherent cell: 1
- absence presence and administration route: 1
- active infection and adaptive immune response: 1, 2, 3, 4, 5
- active infection and adaptive immune system: 1
- active infection and additional mechanism: 1
- adaptive immune response and additional cell: 1
- adaptive immune response and administration route: 1, 2
- adaptive immune system and additional cell: 1
- adaptive immune system and administration route: 1
Co phrase search for related documents, hyperlinks ordered by date