Author: Ishikawa, G.; Argenti, G.; Fadel, C. B.
Title: Non-specific blood tests as proxies for COVID-19 hospitalisation: are there plausible associations after excluding noisy predictors? Cord-id: 58k7s2mu Document date: 2021_1_11
ID: 58k7s2mu
Snippet: This study applied causal criteria in directed acyclic graphs for handling covariates in associations for prognosis of severe coronavirus disease 2019 (COVID-19) cases. To identify non-specific blood tests and risk factors as predictors of hospitalisation due to COVID-19, one has to exclude noisy predictors by comparing the concordance statistics (area under the curve − AUC) for positive and negative cases of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Predictors with signifi
Document: This study applied causal criteria in directed acyclic graphs for handling covariates in associations for prognosis of severe coronavirus disease 2019 (COVID-19) cases. To identify non-specific blood tests and risk factors as predictors of hospitalisation due to COVID-19, one has to exclude noisy predictors by comparing the concordance statistics (area under the curve − AUC) for positive and negative cases of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Predictors with significant AUC at negative stratum should be either controlled for their confounders or eliminated (when confounders are unavailable). Models were classified according to the difference of AUC between strata. The framework was applied to an open database with 5644 patients from Hospital Israelita Albert Einstein in Brazil with SARS-CoV-2 reverse transcription – polymerase chain reaction (RT-PCR) exam. C-reactive protein (CRP) was a noisy predictor: hospitalisation could have happened due to causes other than COVID-19 even when SARS-CoV-2 RT-PCR is positive and CRP is reactive, as most cases are asymptomatic to mild. Candidates of characteristic response from moderate-to-severe inflammation of COVID-19 were: combinations of eosinophils, monocytes and neutrophils, with age as risk factor; and creatinine, as risk factor, sharpens the odds ratio of the model with monocytes, neutrophils and age.
Search related documents:
Co phrase search for related documents- absence effect and logistic regression: 1
- absence effect and low association: 1
- acute inflammatory kidney response and liver kidney: 1
- acute respiratory and acyclic graph: 1, 2
- acute respiratory and liver kidney: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and liver kidney disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and long hospital stay: 1, 2, 3
- acute respiratory and los stay hospital length: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and low association: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- acyclic graph and logistic regression: 1, 2, 3
- acyclic graph and logistic regression model: 1
- liver kidney and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- liver kidney and logistic regression model: 1, 2, 3, 4, 5, 6
- liver kidney and los stay hospital length: 1
- liver kidney disease and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- liver kidney disease and logistic regression model: 1, 2, 3, 4
- liver kidney disease and los stay hospital length: 1
Co phrase search for related documents, hyperlinks ordered by date