Selected article for: "closed loop and loop system"

Author: Wei, Wei; Duan, Bowen; Zuo, Min; Zhu, Quanmin
Title: An extended state observer based U-model control of the COVID-19()
  • Cord-id: 56ku4gbm
  • Document date: 2021_2_25
  • ID: 56ku4gbm
    Snippet: The coronavirus disease 2019 (COVID-19) is a new, rapidly spreading and evolving pandemic around the world. The COVID-19 has seriously affected people’s health or even threaten people’s life. In order to contain the spread of the pandemic and minimize its impact on economy, the tried-and-true control theory is utilized. Firstly, the control problem is clarified. Then, by combining advantages of the U-model control and the extended state observer (ESO), an extended state observer-based U-mode
    Document: The coronavirus disease 2019 (COVID-19) is a new, rapidly spreading and evolving pandemic around the world. The COVID-19 has seriously affected people’s health or even threaten people’s life. In order to contain the spread of the pandemic and minimize its impact on economy, the tried-and-true control theory is utilized. Firstly, the control problem is clarified. Then, by combining advantages of the U-model control and the extended state observer (ESO), an extended state observer-based U-model control (ESOUC) is proposed to generate a population restriction policy. Closed-loop stability of the regulation system is also proved Two examples are considered, and numerical simulation results show that the ESOUC can suppress the COVID-19 faster than the linear active disturbance rejection control, which benefits controlling the infectious disease and the economic recovery. The ESOUC may provide a feasible non-pharmaceutical intervention in the control of the COVID-19.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1