Author: Thepphakorn, Thatchai; Sooncharoen, Saisumpan; Pongcharoen, Pupong
Title: Particle Swarm Optimisation Variants and Its Hybridisation Ratios for Generating Cost-Effective Educational Course Timetables Cord-id: 12obaul4 Document date: 2021_5_8
ID: 12obaul4
Snippet: Due to the COVID-19 pandemic, many universities across the globe are unexpectedly accelerated to face another major financial crisis. An effective university course timetabling has a direct effect on the utilisation of the university resources and its operating costs. The university course timetabling is classified to be a Non-deterministic Polynomial (NP)-hard problem. Constructing the optimal timetables without an intelligence timetabling tool is extremely difficult task and very time-consumin
Document: Due to the COVID-19 pandemic, many universities across the globe are unexpectedly accelerated to face another major financial crisis. An effective university course timetabling has a direct effect on the utilisation of the university resources and its operating costs. The university course timetabling is classified to be a Non-deterministic Polynomial (NP)-hard problem. Constructing the optimal timetables without an intelligence timetabling tool is extremely difficult task and very time-consuming. A Hybrid Particle Swarm Optimisation-based Timetabling (HPSOT) tool has been developed for optimising the academic operating costs. In the present study, two variants of Particle Swarm Optimisation (PSO) including Standard PSO (SPSO) and Maurice Clerc PSO (MCPSO) were embedded in the HPSOT program. Five combinations of Insertion Operator (IO) and Exchange Operator (EO) were also proposed and integrated within the HPSOT program aimed at improving the performance of the proposed PSO variants. The statistical design and analysis indicated that five combination results of IO and EO for hybrid SPSO and MCPSO were significantly better than those obtained from the original PSO variants for all eleven problem instances. The average computational times taken by the proposed hybrid methods were also faster than the conventional SPSO and MCPSO for all cases.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date