Author: Miller, Allison K; Mifsud, Jonathon C O; Costa, Vincenzo A; Grimwood, Rebecca M; Kitson, Jane; Baker, Cindy; Brosnahan, Cara L; Pande, Anjali; Holmes, Edward C; Gemmell, Neil J; Geoghegan, Jemma L
Title: Slippery When wet: Cross-Species Transmission of Divergent Coronaviruses in Bony and Jawless Fish and The Evolutionary History of the Coronaviridae Cord-id: 1v09f7ff Document date: 2021_5_31
ID: 1v09f7ff
Snippet: The Nidovirales comprise a genetically diverse group of positive-sense single-stranded RNA virus families that infect a range of invertebrate and vertebrate hosts. Recent metagenomic studies have identified nido-like virus sequences, particularly those related to the Coronaviridae, in a range of aquatic hosts including fish, amphibians and reptiles. We sought to identify additional members of the Coronaviridae in both bony and jawless fish through a combination of total RNA sequencing (meta-tran
Document: The Nidovirales comprise a genetically diverse group of positive-sense single-stranded RNA virus families that infect a range of invertebrate and vertebrate hosts. Recent metagenomic studies have identified nido-like virus sequences, particularly those related to the Coronaviridae, in a range of aquatic hosts including fish, amphibians and reptiles. We sought to identify additional members of the Coronaviridae in both bony and jawless fish through a combination of total RNA sequencing (meta-transcriptomics) and data mining of published RNA sequencing data, and from this reveal more of the long-term patterns and processes of coronavirus evolution. Accordingly, we identified a number of divergent viruses that fell within the Letovirinae subfamily of the Coronaviridae, including those in a jawless fish – the pouched lamprey. By mining fish transcriptome data we identified additional virus transcripts matching these viruses in bony fish from both marine and freshwater environments. These new viruses retained sequence conservation in the RNA-dependant RNA polymerase across the Coronaviridae, but formed a distinct and diverse phylogenetic group. Although there are broad-scale topological similarities between the phylogenies of the major groups of coronaviruses and their vertebrate hosts, the evolutionary relationships of viruses within the Letovirinae does not mirror that of their hosts. For example, the coronavirus found in the pouched lamprey fell within the phylogenetic diversity of bony fish letoviruses, indicative of past host switching events. Hence, despite possessing a phylogenetic history that likely spans the entire history of the vertebrates, coronavirus evolution has been characterised by relatively frequent cross-species transmission, particularly in hosts that reside in aquatic habitats.
Search related documents:
Co phrase search for related documents- accession number and low complexity: 1
- acute respiratory syndrome and additional virus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and long branch: 1
- acute respiratory syndrome and long branch length: 1
- acute respiratory syndrome and long genome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute respiratory syndrome and long term opportunity: 1, 2
- acute respiratory syndrome and low complexity: 1, 2, 3, 4, 5
- additional virus and low complexity: 1
Co phrase search for related documents, hyperlinks ordered by date