Author: Liu, Dan; Ju, Chenhui; Han, Chao; Shi, Rui; Chen, Xuehui; Duan, Demin; Yan, Jinghua; Yan, Xiyun
Title: Nanozyme chemiluminescence paper test for rapid and sensitive diagnosis of SARS-CoV-2 infection Cord-id: 2s995ku4 Document date: 2020_11_13
ID: 2s995ku4
Snippet: COVID-19 has evolved into a global pandemic. Early and rapid detection is crucial to control of the SARS-CoV-2 transmission. While representing the gold standard for early diagnosis, nucleic acid tests for SARS-CoV-2 are often complicated and time-consuming. Serological rapid antibody tests are characterized by high rates of false-negative diagnoses, especially during early infection. Here, we developed a novel nanozyme-based chemiluminescence paper assay for rapid and sensitive detection of SAR
Document: COVID-19 has evolved into a global pandemic. Early and rapid detection is crucial to control of the SARS-CoV-2 transmission. While representing the gold standard for early diagnosis, nucleic acid tests for SARS-CoV-2 are often complicated and time-consuming. Serological rapid antibody tests are characterized by high rates of false-negative diagnoses, especially during early infection. Here, we developed a novel nanozyme-based chemiluminescence paper assay for rapid and sensitive detection of SARS-CoV-2 spike antigen, which integrates nanozyme and enzymatic chemiluminescence immunoassay with the lateral flow strip. The core of our paper test is a robust Co–Fe@hemin-peroxidase nanozyme that catalyzes chemiluminescence comparable with natural peroxidase HRP and amplifies immune reaction signal. The detection limit for spike protein of SARS-CoV-2 was 0.1 ng/mL, with a linear range of 0.2-100 ng/mL. Moreover, the sensitivity of test for pseudovirus could reach 360 TCID(50)/mL, which was comparable with ELISA method. The strip recognized SARS-CoV-2 antigen specifically, and there was no cross reaction with other coronaviruses or influenza A subtypes. This testing can be completed within 16 min, much shorter compared to the usual 1-2 h required for currently used nucleic acid tests. Furthermore, signal detection is feasible using the camera of a standard smartphone. Ingredients for nanozyme synthesis are simple and readily available, considerably lowering the overall cost. In conclusion, our paper test provides a high-sensitive point-of-care testing (POCT) approach for SARS-CoV-2 antigen detection, which should greatly facilitate early detection of SARS-CoV-2 infections, and considerably lower the financial burden on national healthcare resources.
Search related documents:
Co phrase search for related documents- acid testing and low chemiluminescent: 1
Co phrase search for related documents, hyperlinks ordered by date