Author: Habashy, Noha H.; Abu-Serie, Marwa M.
                    Title: The potential antiviral effect of major royal jelly protein2 and its isoform X1 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insight on their sialidase activity and molecular docking  Cord-id: 3du4jluy  Document date: 2020_11_11
                    ID: 3du4jluy
                    
                    Snippet: Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 is a newly emerging type of CoV. We evaluated the predicted anti-SARS-CoV-2 effect of major royal jelly protein (MRJP)2 and MRJP2 isoform X1, which recently showed high efficacy against other enveloped RNA-viruses (HCV and HIV). Some in-silico analyses have been performed to predict the impact of these proteins on viral entry, replication, and complications. These proteins have shown a high potency in sialic acid hydrolysis from the lung
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 is a newly emerging type of CoV. We evaluated the predicted anti-SARS-CoV-2 effect of major royal jelly protein (MRJP)2 and MRJP2 isoform X1, which recently showed high efficacy against other enveloped RNA-viruses (HCV and HIV). Some in-silico analyses have been performed to predict the impact of these proteins on viral entry, replication, and complications. These proteins have shown a high potency in sialic acid hydrolysis from the lung cells (WI-38) surface. Docking analysis showed that these proteins have a high binding affinity to viral receptor-binding sites in the receptor-binding domain, causing attachment prevention. Moreover, MRJPs can exert an inhibitory influence, via different mechanisms, for SARS-CoV-2 non-structural proteins (main and papain proteases, RNA replicase, RNA-dependent RNA polymerase, and methyltransferase). Also, they can bind to hemoglobin-binding sites on viral-nsps and prevent their hemoglobin attack. Thus, MRJP2 and MRJP2 X1 can be a promising therapy for SARS-CoV-2 infection.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
 
                                Co phrase  search for related documents, hyperlinks ordered by date