Author: Liu, Yuwei; Du, Xuebei; Chen, Jing; Jin, Yalei; Peng, Li; Wang, Harry H.X.; Luo, Mingqi; Chen, Ling; Zhao, Yan
Title: Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19 Cord-id: 2h3kz82b Document date: 2020_4_10
ID: 2h3kz82b
Snippet: Abstract Background Several studies have described the clinical characteristics of patients with novel coronavirus (SARS-CoV-2) infected pneumonia (COVID-19), indicating severe patients tended to have higher neutrophil to lymphocyte ratio (NLR). Whether baseline NLR could be an independent predictor of in-hospital death in Chinese COVID-19 patients remains to be investigated. Methods A cohort of patients with COVID-19 admitted to the Zhongnan Hospital of Wuhan University from January 1 to Februa
Document: Abstract Background Several studies have described the clinical characteristics of patients with novel coronavirus (SARS-CoV-2) infected pneumonia (COVID-19), indicating severe patients tended to have higher neutrophil to lymphocyte ratio (NLR). Whether baseline NLR could be an independent predictor of in-hospital death in Chinese COVID-19 patients remains to be investigated. Methods A cohort of patients with COVID-19 admitted to the Zhongnan Hospital of Wuhan University from January 1 to February 29 was retrospectively analyzed. The baseline data of laboratory examinations, including NLR, were collected. Univariate and multivariate logistic regression models were developed to assess the independent relationship between the baseline NLR and in-hospital all-cause death. A sensitivity analysis was performed by converting NLR from a continuous variable to a categorical variable according to tertile. Interaction and stratified analyses were conducted as well. Results 245 COVID-19 patients were included in the final analyses, and the in-hospital mortality was 13.47%. Multivariate analysis demonstrated that there was 8% higher risk of in-hospital mortality for each unit increase in NLR (Odds ratio [OR] = 1.08; 95% confidence interval [95% CI], 1.01 to 1.14; P = 0.0147). Compared with patients in the lowest tertile, the NLR of patients in the highest tertile had a 15.04-fold higher risk of death (OR = 16.04; 95% CI, 1.14 to 224.95; P = 0.0395) after adjustment for potential confounders. Notably, the fully adjusted OR for mortality was 1.10 in males for each unit increase of NLR (OR = 1.10; 95% CI, 1.02 to 1.19; P = 0.016). Conclusions NLR is an independent risk factor of the in-hospital mortality for COVID-19 patients especially for male. Assessment of NLR may help identify high risk individuals with COVID-19.
Search related documents:
Co phrase search for related documents- acute coronary syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute coronary syndrome and logistic regression model: 1, 2
- acute coronary syndrome and lymphocyte count: 1, 2
- acute coronary syndrome and lymphocyte ratio: 1, 2
- adjust model and logistic regression: 1, 2, 3, 4, 5
- adjust model and logistic regression model: 1, 2, 3, 4
- liver disease and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
- liver disease and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- logistic regression and low lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- logistic regression and low tertile: 1, 2, 3
- logistic regression and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- logistic regression and lymphocyte platelet count red blood cell: 1, 2
- logistic regression and lymphocyte ratio: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- logistic regression model and low lymphocyte count: 1
- logistic regression model and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
- logistic regression model and lymphocyte platelet count red blood cell: 1
- logistic regression model and lymphocyte ratio: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
Co phrase search for related documents, hyperlinks ordered by date