Selected article for: "different length and secondary structure"

Author: Haslinger, Christian; Stadler, Peter F.
Title: RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties
  • Cord-id: 5nqrrnqr
  • Document date: 1999_1_1
  • ID: 5nqrrnqr
    Snippet: The secondary structures of nucleic acids form a particularly important class of contact structures. Many important RNA molecules, however, contain pseudo-knots, a structural feature that is excluded explicitly from the conventional definition of secondary structures. We propose here a generalization of secondary structures incorporating ‘non-nested’ pseudo-knots, which we call bi-secondary structures, and discuss measures for the complexity of more general contact structures based on their
    Document: The secondary structures of nucleic acids form a particularly important class of contact structures. Many important RNA molecules, however, contain pseudo-knots, a structural feature that is excluded explicitly from the conventional definition of secondary structures. We propose here a generalization of secondary structures incorporating ‘non-nested’ pseudo-knots, which we call bi-secondary structures, and discuss measures for the complexity of more general contact structures based on their graph-theoretical properties. Bi-secondary structures are planar trivalent graphs that are characterized by special embedding properties. We derive exact upper bounds on their number (as a function of the chain length n) implying that there are fewer different structures than sequences. Computational results show that the number of bi-secondary structures grows approximately like 2.35(n). Numerical studies based on kinetic folding and a simple extension of the standard energy model show that the global features of the sequence-structure map of RNA do not change when pseudo-knots are introduced into the secondary structure picture. We find a large fraction of neutral mutations and, in particular, networks of sequences that fold into the same shape. These neutral networks percolate through the entire sequence space.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1