Author: Yu, Mi-Sun; Lee, June; Lee, Jin Moo; Kim, Younggyu; Chin, Young-Won; Jee, Jun-Goo; Keum, Young-Sam; Jeong, Yong-Joo
                    Title: Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13  Cord-id: 72myxp9t  Document date: 2012_6_15
                    ID: 72myxp9t
                    
                    Snippet: Severe acute respiratory syndrome (SARS) is an infectious disease with a strong potential for transmission upon close personal contact and is caused by the SARS-coronavirus (CoV). However, there are no natural or synthetic compounds currently available that can inhibit SARS-CoV. We examined the inhibitory effects of 64 purified natural compounds against the activity of SARS helicase, nsP13, and the hepatitis C virus (HCV) helicase, NS3h, by conducting fluorescence resonance energy transfer (FRET
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Severe acute respiratory syndrome (SARS) is an infectious disease with a strong potential for transmission upon close personal contact and is caused by the SARS-coronavirus (CoV). However, there are no natural or synthetic compounds currently available that can inhibit SARS-CoV. We examined the inhibitory effects of 64 purified natural compounds against the activity of SARS helicase, nsP13, and the hepatitis C virus (HCV) helicase, NS3h, by conducting fluorescence resonance energy transfer (FRET)-based double-strand (ds) DNA unwinding assay or by using a colorimetry-based ATP hydrolysis assay. While none of the compounds, examined in our study inhibited the DNA unwinding activity or ATPase activity of human HCV helicase protein, we found that myricetin and scutellarein potently inhibit the SARS-CoV helicase protein in vitro by affecting the ATPase activity, but not the unwinding activity, nsP13. In addition, we observed that myricetin and scutellarein did not exhibit cytotoxicity against normal breast epithelial MCF10A cells. Our study demonstrates for the first time that selected naturally-occurring flavonoids, including myricetin and scultellarein might serve as SARS-CoV chemical inhibitors.
 
  Search related documents: 
                                Co phrase  search for related documents- active ingredient and acute ards respiratory distress syndrome: 1
- active ingredient and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
 
                                Co phrase  search for related documents, hyperlinks ordered by date