Selected article for: "lps response and lung inflammation"

Author: Ge, Xin; Meng, Xianglin; Fei, Dongsheng; Kang, Kai; Wang, Qiubo; Zhao, Mingyan
Title: Lycorine attenuates lipopolysaccharide-induced acute lung injury through the HMGB1/TLRs/NF-κB pathway
  • Cord-id: 1fa8hk2n
  • Document date: 2020_8_1
  • ID: 1fa8hk2n
    Snippet: Lung injury associated with systemic inflammatory response is a common problem affecting human health. Previous studies have shown that lycorine exerts a anti-inflammatory effect. However, whether lycorine alleviates lung injury remains unclear. To explore this issue, BALB/c mice and MLE-12 cells were treated with lipopolysaccharide (LPS) to establish lung injury mouse model and cell model, respectively. Glycyrrhizic acid, known as an inhibitor of ALI, was also used to study the effects of lycor
    Document: Lung injury associated with systemic inflammatory response is a common problem affecting human health. Previous studies have shown that lycorine exerts a anti-inflammatory effect. However, whether lycorine alleviates lung injury remains unclear. To explore this issue, BALB/c mice and MLE-12 cells were treated with lipopolysaccharide (LPS) to establish lung injury mouse model and cell model, respectively. Glycyrrhizic acid, known as an inhibitor of ALI, was also used to study the effects of lycorine in vitro. Our results showed that after LPS treatment, the lung injury score, lung wet-to-dry weight ratio, and malondialdehyde (MDA) production in the lung tissues and the expression levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid were significantly increased, whereas their levels were decreased by lycorine. Additionally, LPS injection activated the high-mobility group box 1 (HMGB1)/Toll-like receptors (TLRs)/NF-κB pathway. However, lycorine treatment attenuated the activity of the HMGB1/TLRs/NF-κB pathway in the lung tissues. In vitro studies showed that lycorine administration significantly decreased the levels of inflammatory cytokines and MDA and attenuated the activity of the HMGB1/TLRs/NF-κB pathway in LPS-treated cells. Moreover, the inhibitory effects of lycorine on the inflammatory response and oxidative stress in LPS-treated lung cells were similar with that of glycyrrhizic acid, and this inhibition was intensified by both lycorine and glycyrrhizic acid treatment. We suggest that lycorine could alleviate LPS-induced lung injury of inflammation and oxidative stress by blocking the HMGB1/TLRs/NF-κB pathway, which gives a new perspective for ALI therapy to treat lycorine as a potential treatment clinically.

    Search related documents:
    Co phrase search for related documents
    • acute ali lung injury and lung dry wet weight ratio: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
    • acute ards respiratory distress syndrome and lung damage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute ards respiratory distress syndrome and lung dry wet weight ratio: 1, 2, 3, 4, 5
    • lps induce and lung damage: 1, 2
    • lps induce and lung dry wet weight ratio: 1
    • lps treatment and lung damage: 1, 2, 3, 4
    • lps treatment and lung dry wet weight ratio: 1, 2, 3
    • lps weight ratio and lung dry wet weight ratio: 1