Author: Milane, Lara; Dolare, Saket; Jahan, Tanjheela; Amiji, Mansoor
Title: Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Cord-id: 19znuyhc Document date: 2021_6_24
ID: 19znuyhc
Snippet: As mitochondria network together to act as the master sensors and effectors of apoptosis, ATP production, reactive oxygen species management, mitophagy/autophagy, and homeostasis; this organelle is an ideal target for pharmaceutical manipulation. Mitochondrial dysfunction contributes to many diseases, for example, β-amyloid has been shown to interfere with mitochondrial protein import and induce apoptosis in Alzheimer's Disease while some forms of Parkinson's Disease are associated with dysfunc
Document: As mitochondria network together to act as the master sensors and effectors of apoptosis, ATP production, reactive oxygen species management, mitophagy/autophagy, and homeostasis; this organelle is an ideal target for pharmaceutical manipulation. Mitochondrial dysfunction contributes to many diseases, for example, β-amyloid has been shown to interfere with mitochondrial protein import and induce apoptosis in Alzheimer's Disease while some forms of Parkinson's Disease are associated with dysfunctional mitochondrial PINK1 and Parkin proteins. Mitochondrial medicine has applications in the treatment of an array of pathologies from cancer to cardiovascular disease. A challenge of mitochondrial medicine is directing therapies to a sub-cellular target. Nanotechnology based approaches combined with mitochondrial targeting strategies can greatly improve the clinical translation and effectiveness of mitochondrial medicine. This review discusses mitochondrial drug delivery approaches and applications of mitochondrial nanomedicines. Nanomedicine approaches have the potential to drive the success of mitochondrial therapies into the clinic.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date