Selected article for: "acute lung and lung injury cause"

Author: Moreno-Eutimio, Mario Adán; Lopez-Macias, Constantino; Pastelin-Palacios, Rodolfo
Title: Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes
  • Cord-id: 6ly8g21f
  • Document date: 2020_4_30
  • ID: 6ly8g21f
    Snippet: During virus infection, host toll-like receptors (TLRs) can recognize different pathogen-associated molecular patterns and trigger the innate immune response. TLR7/8 can identify the single-stranded RNA (ssRNA) of the virus. This study aimed to search ssRNA sequences recognized by TLR7/8 from the SARS-CoV-2, SARS-CoV, and MERS-CoV whole genomes by a bioinformatic technique. The immunoinformatic approach showed that the SARS-CoV-2 genome has more ssRNA fragments that could be recognized by TLR7/8
    Document: During virus infection, host toll-like receptors (TLRs) can recognize different pathogen-associated molecular patterns and trigger the innate immune response. TLR7/8 can identify the single-stranded RNA (ssRNA) of the virus. This study aimed to search ssRNA sequences recognized by TLR7/8 from the SARS-CoV-2, SARS-CoV, and MERS-CoV whole genomes by a bioinformatic technique. The immunoinformatic approach showed that the SARS-CoV-2 genome has more ssRNA fragments that could be recognized by TLR7/8 than the SARS-CoV genome. These findings suggest innate immune hyperactivation by SARS-CoV-2. This activity is possibly able to provoke a robust proinflammatory response via TLR7/8 recognition and cause acute lung injury.

    Search related documents:
    Co phrase search for related documents
    Co phrase search for related documents, hyperlinks ordered by date