Author: Hashimoto, Masanori; Katayama, Kota; Furutani, Yuji; Kandori, Hideki
Title: Zinc Binding to Heliorhodopsin. Cord-id: 41x82cgx Document date: 2020_9_17
ID: 41x82cgx
Snippet: Heliorhodopsin (HeR), a recently discovered new rhodopsin family, has an inverted membrane topology compared to animal and microbial rhodopsins, and no ion-transport activity. The slow photocycle of HeRs suggests a light-sensor function, although the function remains unknown. HeRs exhibit no specific binding of monovalent cations or anions. Despite this, ATR-FTIR spectroscopy in the present study demonstrates binding of Zn2+ to HeR from Thermoplasmatales archaeon (TaHeR). The biding of Zn2+ to 0
Document: Heliorhodopsin (HeR), a recently discovered new rhodopsin family, has an inverted membrane topology compared to animal and microbial rhodopsins, and no ion-transport activity. The slow photocycle of HeRs suggests a light-sensor function, although the function remains unknown. HeRs exhibit no specific binding of monovalent cations or anions. Despite this, ATR-FTIR spectroscopy in the present study demonstrates binding of Zn2+ to HeR from Thermoplasmatales archaeon (TaHeR). The biding of Zn2+ to 0.2 mM Kd is accompanied by helical structural perturbations without altering its color. Even though ion-specific FTIR spectra were observed for many divalent cations, only helical structural perturbations were observed for Zn2+-binding. These findings suggest a possible modification of HeR function by Zn2+.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date