Author: Fotiadis, Anestis; Polyzos, Stathis; Huan, Tzung-Cheng T.C.
Title: The good, the bad and the ugly on COVID-19 tourism recovery Cord-id: 6zx7j4tn Document date: 2020_12_13
ID: 6zx7j4tn
Snippet: This paper is to produce different scenarios in forecasts for international tourism demand, in light of the COVID-19 pandemic. By implementing two distinct methodologies (the Long Short Term Memory neural network and the Generalized Additive Model), based on recent crises, we are able to calculate the expected drop in the international tourist arrivals for the next 12 months. We use a rolling-window testing strategy to calculate accuracy metrics and show that even though all models have comparab
Document: This paper is to produce different scenarios in forecasts for international tourism demand, in light of the COVID-19 pandemic. By implementing two distinct methodologies (the Long Short Term Memory neural network and the Generalized Additive Model), based on recent crises, we are able to calculate the expected drop in the international tourist arrivals for the next 12 months. We use a rolling-window testing strategy to calculate accuracy metrics and show that even though all models have comparable accuracy, the forecasts produced vary significantly according to the training data set, a finding that should be alarming to researchers. Our results indicate that the drop in tourist arrivals can range between 30.8% and 76.3% and will persist at least until June 2021.
Search related documents:
Co phrase search for related documents- absolute error and accuracy metric: 1
- absolute error and active population: 1
- absolute error and lockdown measure: 1
- absolute error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and long period: 1
- absolute error and long state: 1, 2
- absolute error and low prediction: 1
- absolute error and low prediction error: 1
- absolute error and lstm algorithm: 1
- absolute error and lstm model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- absolute error and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- absolute error and lstm prediction: 1, 2, 3, 4, 5
- absolute error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and machine learn: 1
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and machine learning function: 1
- absolute error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- academic community and accuracy improve: 1
- academic community and active population: 1
Co phrase search for related documents, hyperlinks ordered by date