Author: Szigeti, Krisztián; Hegedűs, Nikolett; Rácz, Kitti; Horváth, Ildikó; Veres, Dániel S; Szöllősi, Dávid; Futó, Ildikó; Módos, Károly; Bozó, Tamás; Karlinger, Kinga; Kovács, Noémi; Varga, Zoltán; Babos, Magor; Budán, Ferenc; Padmanabhan, Parasuraman; Gulyás, Balázs; Máthé, Domokos
Title: Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent. Cord-id: 38rdodt2 Document date: 2018_1_1
ID: 38rdodt2
Snippet: Background The aim of this study was to develop and characterize a nanoparticle-based image-contrast platform which is biocompatible, chemically stable, and accessible for radiolabeling with 201Tl. We explored whether this nanoparticle enhanced the T1 signal which might make it an MRI contrast agent as well. Methods The physical properties of citrate-coated Prussian blue nanoparticles (PBNPs) (iron(II);iron(III);octadecacyanide) doped with 201Tl isotope were characterized with atomic force micro
Document: Background The aim of this study was to develop and characterize a nanoparticle-based image-contrast platform which is biocompatible, chemically stable, and accessible for radiolabeling with 201Tl. We explored whether this nanoparticle enhanced the T1 signal which might make it an MRI contrast agent as well. Methods The physical properties of citrate-coated Prussian blue nanoparticles (PBNPs) (iron(II);iron(III);octadecacyanide) doped with 201Tl isotope were characterized with atomic force microscopy, dynamic light scattering, and zeta potential measurement. PBNP biodistribution was determined by using SPECT and MRI following intravenous administration into C57BL6 mice. Activity concentrations (MBq/cm3) were calculated from the SPECT scans for each dedicated volume of interest (VOI) of liver, kidneys, salivary glands, heart, lungs, and brain. Results PBNP accumulation peaked at 2 hours after injection predominantly in the kidneys and the liver followed by a gradual decrease in activity in later time points. Conclusion We synthetized, characterized, and radiolabeled a Prussian blue-based nanoparticle platform for contrast material applications. Its in vivo radiochemical stability and biodistribution open up the way for further diagnostic applications.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date