Author: Shastri, Sourabh; Singh, Kuljeet; Kumar, Sachin; Kour, Paramjit; Mansotra, Vibhakar
Title: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study Cord-id: 7k2t5ctu Document date: 2020_8_20
ID: 7k2t5ctu
Snippet: Covid-19 is a highly contagious virus which almost freezes the world along with its economy. Its ability of human-to-human and surface-to-human transmission turns the world into catastrophic phase. In this study, our aim is to predict the future conditions of novel Coronavirus to recede its impact. We have proposed deep learning based comparative analysis of Covid-19 cases in India and USA. The datasets of confirmed and death cases of Covid-19 are taken into consideration. The recurrent neural n
Document: Covid-19 is a highly contagious virus which almost freezes the world along with its economy. Its ability of human-to-human and surface-to-human transmission turns the world into catastrophic phase. In this study, our aim is to predict the future conditions of novel Coronavirus to recede its impact. We have proposed deep learning based comparative analysis of Covid-19 cases in India and USA. The datasets of confirmed and death cases of Covid-19 are taken into consideration. The recurrent neural network (RNN) based variants of long short term memory (LSTM) such as Stacked LSTM, Bi-directional LSTM and Convolutional LSTM are used to design the proposed methodology and forecast the Covid-19 cases for one month ahead. Convolution LSTM outperformed the other two models and predicts the Covid-19 cases with high accuracy and very less error for all four datasets of both countries. Upward/downward trend of forecasted Covid-19 cases are also visualized graphically, which would be helpful for researchers and policy makers to mitigate the mortality and morbidity rate by streaming the Covid-19 into right direction.
Search related documents:
Co phrase search for related documents- long lstm short term memory and lstm layer: 1, 2, 3, 4, 5, 6
- long lstm short term memory and lstm layer input: 1
- long lstm short term memory base and lstm network: 1
- long lstm short term memory base and lstm short term memory: 1
- long short term memory and loss function: 1, 2, 3, 4
- long short term memory and lstm layer: 1, 2, 3, 4, 5, 6, 7
- long short term memory and lstm layer input: 1, 2
- long short term memory and lstm model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short term memory and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short term memory and lstm output: 1, 2, 3, 4, 5
- long short term memory and lstm result: 1, 2, 3, 4, 5
- long short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- long short term memory and lstm stack: 1
- long short term memory apply and lstm model: 1
- long short term memory apply and lstm network: 1
- long short term memory apply and lstm short term memory: 1, 2
- loss function and lstm model: 1, 2, 3, 4
- loss function and lstm network: 1, 2
- loss function and lstm short term memory: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date