Author: Eggermont, Hilde; Verschuren, Dirk
Title: ORIGINAL ARTICLE: Taxonomy and diversity of Afroalpine Chironomidae (Insecta: Diptera) on Mount Kenya and the Rwenzori Mountains, East Africa Cord-id: f4moopcc Document date: 2006_9_18
ID: f4moopcc
Snippet: Aim Anthropogenic climate change is expected to result in the complete loss of glaciers from the high mountains of tropical Africa, with profound impacts on the hydrology and ecology of unique tropical coldâ€water lakes located downstream from them. This study examines the biodiversity of Chironomidae (Insecta: Diptera) communities in these scarce Afroalpine lake systems, in order to determine their uniqueness in relation to lowland African lakes and alpine lakes in temperate regions, and to ev
Document: Aim Anthropogenic climate change is expected to result in the complete loss of glaciers from the high mountains of tropical Africa, with profound impacts on the hydrology and ecology of unique tropical coldâ€water lakes located downstream from them. This study examines the biodiversity of Chironomidae (Insecta: Diptera) communities in these scarce Afroalpine lake systems, in order to determine their uniqueness in relation to lowland African lakes and alpine lakes in temperate regions, and to evaluate the potential of Afroalpine Chironomidae as biological indicators to monitor future changes in the ecological integrity of their habitat. Location Mount Kenya (Kenya) and Rwenzori Mountains (Uganda). Methods The species composition of Afroalpine chironomid communities was assessed using recent larval death assemblages extracted from the surface sediments of 11 highâ€mountain lakes between 2900 and 4575 m. Results were compared with similar faunal data from 68 East African lakes at low and middle elevation (750–2760 m), and with literature records of Chironomidae species distribution in subâ€Saharan Africa, the Palaearctic region and elsewhere. All recovered taxa were fully described and illustrated. Results The 11â€lake analysis yielded 1744 subfossil chironomid larvae belonging to 16 distinct taxa of fullâ€grown larvae, and three taxa of less differentiated juveniles. Eleven of these 16 are not known to occur in African lakes at lower elevation, and eight taxa (or 50% of total species richness) appear restricted to the specific habitat of cold lakes above 3900 m, where nightâ€time freezing is frequent yearâ€round. The faunal transition zone coincides broadly with the Ericaceous zone of terrestrial vegetation (c. 3000–4000 m). Snowline depression during the Quaternary ice ages must have facilitated dispersion of coldâ€stenothermous species among the high mountains of equatorial East Africa, but less so from or to the Palaearctic region via the Ethiopian highlands. Main conclusions Chironomid communities in glacierâ€fed lakes on Africa's highest mountains are highly distinct from those of lowland African lakes, and potentially unique on a continental scale. By virtue of excellent preservation and their spatial and temporal integration of local community dynamics, chironomid larval death assemblages extracted from surface sediments are powerful biological indicators for monitoring the hydrological and ecological changes associated with the current retreat and loss of Africa's glaciers.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date