Author: Stephens, Patrick R.; Gottdenker, N.; Schatz, A. M.; Schmidt, J. P.; Drake, John M.
Title: Characteristics of the 100 largest modern zoonotic disease outbreaks Cord-id: esp7rioi Document date: 2021_11_8
ID: esp7rioi
Snippet: Zoonotic disease outbreaks are an important threat to human health and numerous drivers have been recognized as contributing to their increasing frequency. Identifying and quantifying relationships between drivers of zoonotic disease outbreaks and outbreak severity is critical to developing targeted zoonotic disease surveillance and outbreak prevention strategies. However, quantitative studies of outbreak drivers on a global scale are lacking. Attributes of countries such as press freedom, surve
Document: Zoonotic disease outbreaks are an important threat to human health and numerous drivers have been recognized as contributing to their increasing frequency. Identifying and quantifying relationships between drivers of zoonotic disease outbreaks and outbreak severity is critical to developing targeted zoonotic disease surveillance and outbreak prevention strategies. However, quantitative studies of outbreak drivers on a global scale are lacking. Attributes of countries such as press freedom, surveillance capabilities and latitude also bias global outbreak data. To illustrate these issues, we review the characteristics of the 100 largest outbreaks in a global dataset (n = 4463 bacterial and viral zoonotic outbreaks), and compare them with 200 randomly chosen background controls. Large outbreaks tended to have more drivers than background outbreaks and were related to large-scale environmental and demographic factors such as changes in vector abundance, human population density, unusual weather conditions and water contamination. Pathogens of large outbreaks were more likely to be viral and vector-borne than background outbreaks. Overall, our case study shows that the characteristics of large zoonotic outbreaks with thousands to millions of cases differ consistently from those of more typical outbreaks. We also discuss the limitations of our work, hoping to pave the way for more comprehensive future studies. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
Search related documents:
Co phrase search for related documents- additional information and logistic regression model: 1, 2, 3
- additional information and low frequency: 1, 2
- additional information and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- additional information and machine learning method: 1
- additional methods and logistic regression: 1
- additional methods and machine learning: 1, 2, 3, 4, 5, 6
- additional methods and machine learning method: 1
- livestock production and local livestock production: 1
- livestock production and machine learning: 1
- logistic regression and low frequency: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- logistic regression and machine learn: 1
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression and machine learning method: 1, 2, 3, 4, 5, 6, 7
- logistic regression model and low frequency: 1
- logistic regression model and machine learn: 1
- logistic regression model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- low frequency and machine learning: 1, 2, 3, 4, 5, 6, 7, 8
Co phrase search for related documents, hyperlinks ordered by date