Selected article for: "chain reaction and superoxide dismutase"

Author: Ke, Jiaxiang; Bian, Xi; Liu, Hu; Li, Bei; Huo, Ran
Title: Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression.
  • Cord-id: qrrysr6j
  • Document date: 2019_12_11
  • ID: qrrysr6j
    Snippet: BACKGROUND Intestinal mucosa barrier dysfunction after burn injury is an important factor for causing mortality of burn patients. The current study established a burn model in rats and used a free radical scavenger edaravone (ED) to treat the rats, so as to investigate the effect of edaravone on intestinal mucosa barrier after burn injury. METHODS Anesthetized rats were subjected to 40% total body surface area water burn immediately, followed by treatment with ED, scrambled antagomir, or antagom
    Document: BACKGROUND Intestinal mucosa barrier dysfunction after burn injury is an important factor for causing mortality of burn patients. The current study established a burn model in rats and used a free radical scavenger edaravone (ED) to treat the rats, so as to investigate the effect of edaravone on intestinal mucosa barrier after burn injury. METHODS Anesthetized rats were subjected to 40% total body surface area water burn immediately, followed by treatment with ED, scrambled antagomir, or antagomiR-320. Intestinal mucosa damage was observed by hematoxylin-eosin staining and graded by colon mucosal damage index (CMDI) score. The contents of total sulfhydryl (TSH), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) were determined by spectrophotometry. Cell apoptosis, protein relative expression,and the in situ expressions of p-Akt and p-Bad were detected by flow cytometry, Western blotting and immunohistochemistry, respectively. The miR-320 expression was determined by quantitative real-time polymerase chain reaction. RESULTS ED alleviated intestinal mucosal damage caused by burn injury, down-regulated the levels of MDA, cytochrome C, cleaved caspase-9 and cleaved caspase-3, but up-regulated the levels of TSH, SOD, CAT and Bcl-2. We also found that ED could reduce oxidative stress, inhibit cell apoptosis, increase the expressions of p-Akt, p-Bad and miR-320, and decrease PTEN expression. PTEN was predicted to be the target gene for miR-320, and cell apoptosis could be promoted by inhibiting miR-320 expression. CONCLUSION ED regulates Akt/Bad/Caspase signaling cascade to reduce apoptosis and oxidative stress through up-regulating miR-320 expression and down-regulating PTEN expression, thus protecting the intestinal mucosal barrier of rats from burn injury.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date