Selected article for: "blood cell and disease severity"

Author: Zhang, Yan; Wang, Shuting; Xia, He; Guo, Jing; He, Kangxin; Huang, Chenjie; Luo, Rui; Chen, Yanfei; Xu, Kaijin; Gao, Hainv; Sheng, Jifang; Li, Lanjuan
Title: Identification of Monocytes Associated with Severe COVID-19 in the PBMCs of Severely Infected patients Through Single-Cell Transcriptome Sequencing
  • Cord-id: vngo9gg1
  • Document date: 2021_6_12
  • ID: vngo9gg1
    Snippet: Understanding the immunological characteristics of monocytes—including the characteristics associated with fibrosis—in severe coronavirus disease 2019 (COVID-19) is crucial for understanding the pathogenic mechanism of the disease and preventing disease severity. In this study, we performed single-cell transcriptomic sequencing of peripheral blood samples collected from six healthy controls and 14 COVID-19 samples including severe, moderate, and convalescent samples from three severely/criti
    Document: Understanding the immunological characteristics of monocytes—including the characteristics associated with fibrosis—in severe coronavirus disease 2019 (COVID-19) is crucial for understanding the pathogenic mechanism of the disease and preventing disease severity. In this study, we performed single-cell transcriptomic sequencing of peripheral blood samples collected from six healthy controls and 14 COVID-19 samples including severe, moderate, and convalescent samples from three severely/critically ill and four moderately ill patients. We found that the monocytes were strongly remodeled in the severely/critically ill patients with COVID-19, with an increased proportion of monocytes and seriously reduced diversity. In addition, we discovered two novel severe-disease-specific monocyte subsets: Mono 0 and Mono 5. These subsets expressed amphiregulin (AREG), epiregulin (EREG), and cytokine interleukin-18 (IL-18) gene, exhibited an enriched erythroblastic leukemia viral oncogene homolog (ErbB) signaling pathway, and appeared to exhibit pro-fibrogenic and pro-inflammation characteristics. We also found metabolic changes in Mono 0 and Mono 5, including increased glycolysis/gluconeogenesis and an increased hypoxia inducible factor-1 (HIF-1) signaling pathway. Notably, one pre-severe sample displayed a monocyte atlas similar to that of the severe/critical samples. In conclusion, our study discovered two novel severe-disease-specific monocyte subsets as potential predictors and therapeutic targets for severe COVID-19. Overall, this study provides potential predictors for severe disease and therapeutic targets for COVID-19 and thus provides a resource for further studies on COVID-19.

    Search related documents:
    Co phrase search for related documents
    • abnormal exaggerated and adaptive innate immune response: 1
    • acute ards respiratory distress syndrome and adaptive innate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • acute ards respiratory distress syndrome and adaptive innate immune response: 1, 2, 3, 4, 5, 6, 7
    • acute ards respiratory distress syndrome and lung function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute ards respiratory distress syndrome result and lung function: 1
    • acute respiratory syndrome and adaptive innate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and adaptive innate immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and long term complication: 1, 2, 3, 4, 5, 6
    • acute respiratory syndrome and lung function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and lung function irreversible loss: 1, 2
    • adaptive innate and lung function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
    • adaptive innate immune response and lung function: 1, 2, 3
    • long term complication and lung function: 1