Author: Wylezinski, Lukasz S; Harris, Coleman R; Heiser, Cody N; Gray, Jamieson D; Spurlock, Charles F
Title: Influence of social determinants of health and county vaccination rates on machine learning models to predict COVID-19 case growth in Tennessee Cord-id: dp6erw6j Document date: 2021_1_1
ID: dp6erw6j
Snippet: The SARS-CoV-2 (COVID-19) pandemic has exposed health disparities throughout the United States, particularly among racial and ethnic minorities. As a result, there is a need for data-driven approaches to pinpoint the unique constellation of clinical and social determinants of health (SDOH) risk factors that give rise to poor patient outcomes following infection in US communities. We combined county-level COVID-19 testing data, COVID-19 vaccination rates, and SDOH information in Tennessee. Betwee
Document: The SARS-CoV-2 (COVID-19) pandemic has exposed health disparities throughout the United States, particularly among racial and ethnic minorities. As a result, there is a need for data-driven approaches to pinpoint the unique constellation of clinical and social determinants of health (SDOH) risk factors that give rise to poor patient outcomes following infection in US communities. We combined county-level COVID-19 testing data, COVID-19 vaccination rates, and SDOH information in Tennessee. Between February-May 2021, we trained machine learning models on a semi-monthly basis using these datasets to predict COVID-19 incidence in Tennessee counties. We then analyzed SDOH data features at each time point to rank the impact of each feature on model performance. Our results indicate that COVID-19 vaccination rates play a crucial role in determining future COVID-19 disease risk. Beginning in mid-March 2021, higher vaccination rates significantly correlated with lower COVID-19 case growth predictions. Further, as the relative importance of COVID-19 vaccination data features grew, demographic SDOH features such as age, race, and ethnicity decreased while the impact of socioeconomic and environmental factors, including access to healthcare and transportation, increased. Incorporating a data framework to track the evolving patterns of community-level SDOH risk factors could provide policymakers with additional data resources to improve health equity and resilience to future public health emergencies.
Search related documents:
Co phrase search for related documents- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absolute error and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- absolute error mean and machine learn: 1
- absolute error mean and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absolute error mean and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- actual case and machine learning: 1, 2
- local government and low vaccination rate: 1
- local government and machine learning: 1, 2
Co phrase search for related documents, hyperlinks ordered by date