Author: Sáez, Carlos; Romero, Nekane; Conejero, J Alberto; GarcÃa-Gómez, Juan M
Title: Potential limitations in COVID-19 machine learning due to data source variability: A case study in the nCov2019 dataset Cord-id: fui5f26p Document date: 2020_10_7
ID: fui5f26p
Snippet: OBJECTIVE: The lack of representative coronavirus disease 2019 (COVID-19) data is a bottleneck for reliable and generalizable machine learning. Data sharing is insufficient without data quality, in which source variability plays an important role. We showcase and discuss potential biases from data source variability for COVID-19 machine learning. MATERIALS AND METHODS: We used the publicly available nCov2019 dataset, including patient-level data from several countries. We aimed to the discovery
Document: OBJECTIVE: The lack of representative coronavirus disease 2019 (COVID-19) data is a bottleneck for reliable and generalizable machine learning. Data sharing is insufficient without data quality, in which source variability plays an important role. We showcase and discuss potential biases from data source variability for COVID-19 machine learning. MATERIALS AND METHODS: We used the publicly available nCov2019 dataset, including patient-level data from several countries. We aimed to the discovery and classification of severity subgroups using symptoms and comorbidities. RESULTS: Cases from the 2 countries with the highest prevalence were divided into separate subgroups with distinct severity manifestations. This variability can reduce the representativeness of training data with respect the model target populations and increase model complexity at risk of overfitting. CONCLUSIONS: Data source variability is a potential contributor to bias in distributed research networks. We call for systematic assessment and reporting of data source variability and data quality in COVID-19 data sharing, as key information for reliable and generalizable machine learning.
Search related documents:
Co phrase search for related documents- acquisition protocol and logistic regression: 1
- acute kidney injury and admission survival day: 1
- acute kidney injury and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute kidney injury and long period: 1, 2, 3, 4
- acute kidney injury and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- acute kidney injury and machine learning model: 1, 2, 3, 4
- acute kidney injury septic shock and logistic regression: 1, 2, 3
- acute kidney injury septic shock and machine learning: 1
- acute respiratory distress syndrome and admission survival day: 1
- acute respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute respiratory distress syndrome and long period: 1, 2, 3, 4, 5, 6
- acute respiratory distress syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
- acute respiratory distress syndrome and machine learning model: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date