Author: Alqahtani, Hamed; Sarker, Iqbal H.; Kalim, Asra; Minhaz Hossain, Syed Md.; Ikhlaq, Sheikh; Hossain, Sohrab
                    Title: Cyber Intrusion Detection Using Machine Learning Classification Techniques  Cord-id: 6uqeb4g8  Document date: 2020_6_8
                    ID: 6uqeb4g8
                    
                    Snippet: As the alarming growth of connectivity of computers and the significant number of computer-related applications increase in recent years, the challenge of fulfilling cyber-security is increasing consistently. It also needs a proper protection system for numerous cyberattacks. Thus, detecting inconsistency and attacks in a computer network and developing intrusion detection system (IDS) that performs a potential role for cyber-security. Artificial intelligence, particularly machine learning techn
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: As the alarming growth of connectivity of computers and the significant number of computer-related applications increase in recent years, the challenge of fulfilling cyber-security is increasing consistently. It also needs a proper protection system for numerous cyberattacks. Thus, detecting inconsistency and attacks in a computer network and developing intrusion detection system (IDS) that performs a potential role for cyber-security. Artificial intelligence, particularly machine learning techniques, has been used to develop a useful data-driven intrusion detection system. In this paper, we employ various popular machine learning classification algorithms, namely Bayesian Network, Naive Bayes classifier, Decision Tree, Random Decision Forest, Random Tree, Decision Table, and Artificial Neural Network, to detect intrusions due to provide intelligent services in the domain of cyber-security. Finally, we test the effectiveness of various experiments on cyber-security datasets having several categories of cyber-attacks and evaluate the effectiveness of the performance metrics, precision, recall, f1-score, and accuracy.
 
  Search related documents: 
                                Co phrase  search for related documents- access control and machine learn: 1
- access control and machine learning: 1, 2, 3
- accuracy f1 score and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54
- accuracy f1 score and machine learning technique: 1
- accuracy f1 score recall and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
- accuracy f1 score recall and machine learning technique: 1
- accuracy f1 score recall precision and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
 
                                Co phrase  search for related documents, hyperlinks ordered by date