Author: Chen, Y.; Ouyang, L.; Bao, S.; Li, Q.; Han, L.; Zhang, H.; Zhu, B.; Xu, M.; Liu, J.; Ge, Y.; Chen, S.
Title: An Interpretable Machine Learning Framework for Accurate Severe vs Non-severe COVID-19 Clinical Type Classification Cord-id: g1u9jods Document date: 2020_5_22
ID: g1u9jods
Snippet: Effectively and efficiently diagnosing COVID-19 patients with accurate clinical type is essential to achieve optimal outcomes of the patients as well as reducing the risk of overloading the healthcare system. Currently, severe and non-severe COVID-19 types are differentiated by only a few clinical features, which do not comprehensively characterize complicated pathological, physiological, and immunological responses to SARS-CoV-2 invasion in different types. In this study, we recruited 214 confi
Document: Effectively and efficiently diagnosing COVID-19 patients with accurate clinical type is essential to achieve optimal outcomes of the patients as well as reducing the risk of overloading the healthcare system. Currently, severe and non-severe COVID-19 types are differentiated by only a few clinical features, which do not comprehensively characterize complicated pathological, physiological, and immunological responses to SARS-CoV-2 invasion in different types. In this study, we recruited 214 confirmed COVID-19 patients in non-severe and 148 in severe type, from Wuhan, China. The patients' comorbidity and symptoms (26 features), and blood biochemistry (26 features) upon admission were acquired as two input modalities. Exploratory analyses demonstrated that these features differed substantially between two clinical types. Machine learning random forest (RF) models using features in each modality were developed and validated to classify COVID-19 clinical types. Using comorbidity/symptom and biochemistry as input independently, RF models achieved >90% and >95% predictive accuracy, respectively. Input features' importance based on Gini impurity were further evaluated and top five features from each modality were identified (age, hypertension, cardiovascular disease, gender, diabetes; D-Dimer, hsTNI, neutrophil, IL-6, and LDH). Combining top 10 multimodal features, RF model achieved >99% predictive accuracy. These findings shed light on how the human body reacts to SARS-CoV-2 invasion as a unity and provide insights on effectively evaluating COVID-19 patient's severity and developing treatment plans accordingly. We suggest that symptoms and comorbidities can be used as an initial screening tool for triaging, while biochemistry and features combined are applied when accuracy is the priority.
Search related documents:
Co phrase search for related documents- abnormal level and acute inflammation: 1
- abnormal level and acute kidney injury: 1
- abnormal level and logistic regression: 1, 2, 3, 4
- accurately classify and acute ards respiratory distress syndrome: 1
- accurately classify and logistic regression: 1
- acute ards respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute ards respiratory distress syndrome and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute ards respiratory distress syndrome and long hospitalization: 1
- acute ards respiratory distress syndrome and lung organ: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute inflammation and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8
- acute inflammation and lung organ: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- acute kidney injury and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute kidney injury and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- acute kidney injury and long hospitalization: 1, 2, 3, 4, 5
- acute kidney injury and lung organ: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- addition explore and logistic regression: 1, 2
- logistic regression and long hospitalization: 1, 2, 3, 4, 5, 6, 7, 8, 9
- logistic regression and lung organ: 1, 2, 3, 4, 5, 6
- logistic regression model and long hospitalization: 1, 2
Co phrase search for related documents, hyperlinks ordered by date