Author: Liu, Jun; Mei, Kai; Zhang, Xiaochen; McLernon, Des; Ma, Dongtang; Wei, Jibo; Zaidi, Syed Ali Raza
                    Title: Fine Timing and Frequency Synchronization for MIMO-OFDM: An Extreme Learning Approach  Cord-id: 7zoaw3vl  Document date: 2020_7_17
                    ID: 7zoaw3vl
                    
                    Snippet: Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is a key technology component in the evolution towards cognitive radio (CR) in next-generation communication in which the accuracy of timing and frequency synchronization significantly impacts the overall system performance. In this paper, we propose a novel scheme leveraging extreme learning machine (ELM) to achieve high-precision synchronization. Specifically, exploiting the preamble signals with synchronizat
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is a key technology component in the evolution towards cognitive radio (CR) in next-generation communication in which the accuracy of timing and frequency synchronization significantly impacts the overall system performance. In this paper, we propose a novel scheme leveraging extreme learning machine (ELM) to achieve high-precision synchronization. Specifically, exploiting the preamble signals with synchronization offsets, two ELMs are incorporated into a traditional MIMO-OFDM system to estimate both the residual symbol timing offset (RSTO) and the residual carrier frequency offset (RCFO). The simulation results show that the performance of the proposed ELM-based synchronization scheme is superior to the traditional method under both additive white Gaussian noise (AWGN) and frequency selective fading channels. Furthermore, comparing with the existing machine learning based techniques, the proposed method shows outstanding performance without the requirement of perfect channel state information (CSI) and prohibitive computational complexity. Finally, the proposed method is robust in terms of the choice of channel parameters (e.g., number of paths) and also in terms of"generalization ability"from a machine learning standpoint.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date