Author: Gstöttner, Christoph; Zhang, Tao; Resemann, Anja; Ruben, Sophia; Pengelley, Stuart; Suckau, Detlev; Welsink, Tim; Wuhrer, Manfred; DomÃnguez-Vega, Elena
Title: Structural and Functional Characterization of SARS-CoV-2 RBD Domains Produced in Mammalian Cells Cord-id: wyal586s Document date: 2021_4_19
ID: wyal586s
Snippet: [Image: see text] As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is still ongoing and dramatically influences our life, the need for recombinant viral proteins for diagnostics, vaccine development, and research is very high. The spike (S) protein, and particularly its receptor-binding domain (RBD), mediates the interaction with the angiotensin-converting enzyme 2 (ACE2) receptor on host cells and may be modulated by its structural features. Therefore, well-character
Document: [Image: see text] As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is still ongoing and dramatically influences our life, the need for recombinant viral proteins for diagnostics, vaccine development, and research is very high. The spike (S) protein, and particularly its receptor-binding domain (RBD), mediates the interaction with the angiotensin-converting enzyme 2 (ACE2) receptor on host cells and may be modulated by its structural features. Therefore, well-characterized recombinant RBDs are essential. We have performed an in-depth structural and functional characterization of RBDs expressed in Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells. To structurally characterize the native RBDs (comprising N- and O-glycans and additional post translational modifications), a multilevel mass spectrometric approach was employed. Released glycan and glycopeptide analysis were integrated with intact mass analysis, glycan-enzymatic dissection, and top-down sequencing for comprehensive annotation of RBD proteoforms. The data showed distinct glycosylation for CHO- and HEK293-RBD with the latter exhibiting antenna fucosylation, a higher level of sialylation, and a combination of core 1 and core 2 type O-glycans. Additionally, using an alternative approach based on N-terminal cleavage of the O-glycosylation, the previously unknown O-glycosylation site was localized at T323. For both RBDs, the binding to SARS-CoV-2 antibodies of positive patients and affinity to the ACE2 receptor was addressed showing comparable results. This work not only offers insights into RBD structural and functional features but also provides an analytical workflow for characterization of new RBDs and batch-to-batch comparison.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date