Selected article for: "chromatin remodeling and gene expression"

Author: Barth, R.; Bystricky, K.; Shaban, H. A.
Title: Coupling chromatin structure and dynamics by live super-resolution imaging
  • Cord-id: dws4qxnl
  • Document date: 2020_5_7
  • ID: dws4qxnl
    Snippet: Chromatin conformation regulates gene expression and thus constant remodeling of chromatin structure is essential to guarantee proper cell function. To gain insight into the spatio-temporal organization of the genome, we employ high-density photo-activated localization microscopy and deep learning to obtain temporally resolved super-resolution images of chromatin in living cells. In combination with high-resolution dense motion reconstruction, we confirm the existence of elongated ~ 45 to 90 nm
    Document: Chromatin conformation regulates gene expression and thus constant remodeling of chromatin structure is essential to guarantee proper cell function. To gain insight into the spatio-temporal organization of the genome, we employ high-density photo-activated localization microscopy and deep learning to obtain temporally resolved super-resolution images of chromatin in living cells. In combination with high-resolution dense motion reconstruction, we confirm the existence of elongated ~ 45 to 90 nm wide chromatin ‘blobs’. A computational chromatin model suggests that these blobs are dynamically associating chromatin fragments in close physical and genomic proximity and adopt TAD-like interactions in the time-average limit. Experimentally, we found that chromatin exhibits a spatio-temporal correlation over ~ 4 μm in space and tens of seconds in time, while chromatin dynamics are correlated over ~ 6 μm and last 40 s. Notably, chromatin structure and dynamics are closely related, which may constitute a mechanism to grant access to regions with high local chromatin concentration.

    Search related documents:
    Co phrase search for related documents
    • living cell and long range: 1