Author: Zhang, Lei; Wang, Hao; Zhang, Yi-qing
Title: Against Ebola: type I interferon guard risk and mesenchymal stromal cell combat sepsis Cord-id: bjqwwzam Document date: 2015_1_1
ID: bjqwwzam
Snippet: The 2014 Ebola outbreak in West Africa triggered a global crisis. Nine countries have reported more than 20 000 infection cases in total and nearly 8000 lives have been lost. The actual death toll is likely much higher than this figure; the death rate is as high as 70%, considering confirmed cases. The Ebola virus launches its destruction by shutting down the host’s innate and adaptive immune systems. The virus then replicates itself out of control and causes a cytokine storm in the host. Cons
Document: The 2014 Ebola outbreak in West Africa triggered a global crisis. Nine countries have reported more than 20 000 infection cases in total and nearly 8000 lives have been lost. The actual death toll is likely much higher than this figure; the death rate is as high as 70%, considering confirmed cases. The Ebola virus launches its destruction by shutting down the host’s innate and adaptive immune systems. The virus then replicates itself out of control and causes a cytokine storm in the host. Consequently, the host’s overdriven immune system attacks its own endothelial cells and this leads to multiple organ hemorrhagic damage, the host dies of septic shock finally. Under current circumstances where no specific interventions have shown effectiveness against the virus, our opinions are justified in applying a non-specific anti-viral approach during the incubation period of virus infection as an essential protection to put the host’s immune system into an alert state and henceforth to slow down the viral replication. When the viral infection proceeds to the terminal stage, the key factor would be applying a non-specific immune modulation approach to suppress the cytokine storm that causes multiple organ failure, in an attempt to open a time window for the host’s immune system to recover.
Search related documents:
Co phrase search for related documents- activate innate immune response and adaptive immune response: 1
- activate innate immune response and adaptive immunity: 1
- activate innate immune response and adaptive innate: 1, 2
- actual death toll and acute respiratory syndrome: 1
- acute respiratory syndrome and adaptive immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive immune system: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive immunity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive immunity innate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive innate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive innate immune system: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute respiratory syndrome and liver failure: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and liver failure cause: 1, 2, 3, 4
- acute respiratory syndrome and lupus erythematosus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and lymphocyte apoptosis: 1, 2, 3, 4
- acute respiratory syndrome and lymphocyte immune cell: 1, 2
- acute stage and adaptive immunity: 1
- acute stage and adaptive immunity innate: 1
- acute stage and adaptive innate: 1
- acute stage and liver failure: 1, 2, 3, 4, 5
Co phrase search for related documents, hyperlinks ordered by date