Author: Saraiva, Althiéris S; Sarmento, Renato A; Gravato, Carlos; Rodrigues, Andreia C M; Campos, Diana; Simão, Fátima C P; Soares, Amadeu M V M
Title: Strategies of cellular energy allocation to cope with paraquat-induced oxidative stress: Chironomids vs Planarians and the importance of using different species. Cord-id: e28vkjrl Document date: 2020_11_1
ID: e28vkjrl
Snippet: Paraquat (PQ) is still used in several countries worldwide as an herbicide for weed control in agricultural production, ponds, reservoirs and irrigation canals. Thus, PQ is frequently found in surface water systems and is potentially toxic to aquatic organisms, since it can cause mitochondrial dysfunction altering in the redox state of cells. This study aimed to investigate the chronic effects of PQ to Chironomus riparius and Girardia tigrina, and compare their physiological strategies to cope w
Document: Paraquat (PQ) is still used in several countries worldwide as an herbicide for weed control in agricultural production, ponds, reservoirs and irrigation canals. Thus, PQ is frequently found in surface water systems and is potentially toxic to aquatic organisms, since it can cause mitochondrial dysfunction altering in the redox state of cells. This study aimed to investigate the chronic effects of PQ to Chironomus riparius and Girardia tigrina, and compare their physiological strategies to cope with environmental stress. The mean emergence time was the most sensitive endpoint for Chironomids, with the lowest observed effect concentrations (LOEC) being 0.02 for males and 0.1 mg PQ L-1 for females. Moreover, PQ reduced the body weight of male and female imagoes, with LOECs of 0.5 and 2.5 mg PQ L-1, respectively. Paraquat also decreased the respiration rate (LOEC = 2.5 mg PQ L-1) and total glutathione (tGSH) content (LOEC = 0.5 mg PQ L-1). Thus, the aerobic production of energy was not affected and allowed chironomids to cope with oxidative stress induced by PQ, but with consequent physiological costs in terms of development rates and weight of adults. In planarians, PQ decreased the locomotion and feeding activity, and delayed photoreceptor regeneration (LOECs = 2.5 mg PQ L-1 for all endpoints). Despite increased aerobic energy production (LOEC = 0.5 mg PQ L-1), planarians were not able to cope with oxidative stress induced by the highest PQ concentrations, since lipid peroxidation levels were significantly increased (LOEC = 2.5 mg PQ L-1) concomitantly with a significant decrease of tGSH (LOEC = 2.5 mg PQ L-1). These results showed that planarians were unable to cope with oxidative stress induced by PQ with consequent impairments of behavior and regeneration despite an increased aerobic energy production.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date