Author: Zhu, Rongbo; Ding, Qianao; Yu, Mai; Wang, Jun; Ma, Maode
Title: Early Warning Scheme of COVID-19 related Internet Public Opinion based on RVM-L Model Cord-id: xm7wiljb Document date: 2021_7_10
ID: xm7wiljb
Snippet: Internet public opinion is affected by many factors corresponding to insufficient data in the very short period, especially for emergency events related to the outbreak of coronavirus disease 2019 (COVID-19). To effectively support real-time analysis and accurate prediction, this paper proposes an early warning scheme, which comprehensively considers the multiple factors of Internet public opinion and the dynamic characteristics of burst events. A hybrid relevance vector machine and logistic reg
Document: Internet public opinion is affected by many factors corresponding to insufficient data in the very short period, especially for emergency events related to the outbreak of coronavirus disease 2019 (COVID-19). To effectively support real-time analysis and accurate prediction, this paper proposes an early warning scheme, which comprehensively considers the multiple factors of Internet public opinion and the dynamic characteristics of burst events. A hybrid relevance vector machine and logistic regression (RVM-L) model is proposed that incorporates multivariate analysis, which adopts Lagrange interpolation to fill in the gaps and improve the forecasting effect based on insufficient data for COVID-19-related events. In addition, a novel metric critical interval is introduced to improve the early warning performance. Detailed experiments show that compared with existing schemes, the proposed RVM-L-based early warning scheme can achieve the prediction accuracy up to 96%, and the intervention within the critical interval can reduce the number of public opinions by 60%.
Search related documents:
Co phrase search for related documents- logistic curve and machine learning: 1, 2, 3, 4
- logistic function and machine learning: 1, 2, 3
- logistic model and machine learn: 1
- logistic model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
- logistic model and machine learning method: 1
- logistic model predict and machine learning: 1, 2, 3, 4
- logistic regression and long term event: 1
- logistic regression and machine learn: 1
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- logistic regression and machine learning method: 1, 2, 3, 4, 5, 6, 7
Co phrase search for related documents, hyperlinks ordered by date