Author: Uçar, Emine; Atila, Ümit; Uçar, Murat; Akyol, Kemal
Title: Automated detection of Covid-19 disease using deep fused features from chest radiography images Cord-id: hlspwdub Document date: 2021_6_11
ID: hlspwdub
Snippet: The health systems of many countries are desperate in the face of Covid-19, which has become a pandemic worldwide and caused the death of hundreds of thousands of people. In order to keep Covid-19, which has a very high propagation rate, under control, it is necessary to develop faster, low-cost and highly accurate methods, rather than costly Polymerase Chain Reaction test that can yield results in a few hours. In this study, a deep learning-based approach that can detect Covid-19 quickly and wi
Document: The health systems of many countries are desperate in the face of Covid-19, which has become a pandemic worldwide and caused the death of hundreds of thousands of people. In order to keep Covid-19, which has a very high propagation rate, under control, it is necessary to develop faster, low-cost and highly accurate methods, rather than costly Polymerase Chain Reaction test that can yield results in a few hours. In this study, a deep learning-based approach that can detect Covid-19 quickly and with high accuracy on X-ray images, which are common in every hospital and can be obtained at low cost, is proposed. Deep features are extracted from X-Ray images in RGB, CIE Lab and RGB CIE color spaces using DenseNet 121 and EfficientNet B0 pre-trained deep learning architectures and then obtained features are fed into a two-stage classifier approach. Each of the classifiers in the proposed approach performs binary classification. In the first stage, healthy and infected samples are separated, and in the second stage, infected samples are detected as Covid-19 or pneumonia. In the experiments, Bi-LSTM network and well-known ensemble approaches such as Gradient Boosting, Random Forest and Extreme Gradient Boosting were used as the classifier model and it was seen that the Bi-LSTM network had a superior performance than other classifiers with 92.489% accuracy.
Search related documents:
Co phrase search for related documents- acceptable accuracy and accuracy rate: 1
- acceptable accuracy and long short term memory: 1
- acceptable accuracy and low number: 1
- acceptable accuracy and machine learning: 1, 2, 3, 4, 5, 6, 7
- accuracy acc and activation function: 1
- accuracy acc and long short term memory: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date