Author: Khan, Muhammad Tahir; Ali, Sajid; Khan, Anwar Sheed; Muhammad, Noor; Khalil, Faiza; Ishfaq, Muhammad; Irfan, Muhammad; Al-Sehemi, Abdullah G.; Muhammad, Shabbir; Malik, Arif; Khan, Taj Ali; Wei, Dong Qing
Title: SARS-CoV-2 Genome from the Khyber Pakhtunkhwa Province of Pakistan Cord-id: es7n93h0 Document date: 2021_3_3
ID: es7n93h0
Snippet: [Image: see text] Among viral outbreaks, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest ones, and it has triggered the global COVID-19 pandemic. In Pakistan, until 5th September 2020, a total of 6342 deaths have been reported, of which 1255 were from the Khyber Pakhtunkhwa (KPK) province. To understand the disease progression and control and also to produce vaccines and therapeutic efforts, whole genome sequence analysis is important. In the current inve
Document: [Image: see text] Among viral outbreaks, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest ones, and it has triggered the global COVID-19 pandemic. In Pakistan, until 5th September 2020, a total of 6342 deaths have been reported, of which 1255 were from the Khyber Pakhtunkhwa (KPK) province. To understand the disease progression and control and also to produce vaccines and therapeutic efforts, whole genome sequence analysis is important. In the current investigation, we sequenced a single sample of SARS-CoV-2 genomes (accession no. MT879619) from a male suspect from Peshawar, the KPK capital city, during the first wave of infection. The local SARS-CoV-2 strain shows some unique characteristics compared to neighboring Iranian and Chinese isolates in phylogenetic tree and mutations. The circulating strains of SARS-CoV-2 represent an intermediate evolution from China and Iran. Furthermore, eight complete whole genome sequences, including the current Pakistani isolates which have been submitted to Global Initiative on Sharing All Influenza Data (GSAID), were also investigated for specific mutations and characters. Some novel mutations [NSP2 (D268del), NSP5 (N228K), and NS3 (F105S)] and specific characters have been detected in the coding regions, which may affect viral transmission, epidemiology, and disease severity. The computational modeling revealed that a majority of these mutations may have a stabilizing effect on the viral protein structure. In conclusion, the genome sequencing of local strains is important for better understanding the pathogenicity, immunogenicity, and epidemiology of causative agents.
Search related documents:
Co phrase search for related documents- accession number and acute respiratory syndrome: 1, 2, 3
- accession wuhan reference genome and acute respiratory syndrome: 1
- accessory protein and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accessory structural and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- activity process and acute respiratory syndrome: 1, 2, 3, 4, 5
- acute respiratory syndrome and local isolate: 1, 2, 3
- acute respiratory syndrome and low quality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date