Selected article for: "beta cov and CoV protein"

Author: Sanches, Paulo.R.S.; Charlie-Silva, Ives; Braz, Helyson.L.B.; Bittar, Cintia; Calmon, Marilia; Rahal, Paula; Cilli, Eduardo M.
Title: Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B.1.1.7, United Kingdom), Beta (B.1.351, South Africa), Gamma (P.1, Brazil) and Delta (B.1.617.2, India)
  • Cord-id: egpz6blx
  • Document date: 2021_9_16
  • ID: egpz6blx
    Snippet: New variants of SARS-CoV-2 Alpha (B.1.1.7); Beta (B.1.351) Gamma (P.1) and Delta (B.1.617.2) quickly spread in the UK, South Africa, Brazil and India, respectively. To address whether mutations in SARS-CoV-2 RBD spike protein could affect virus infectivity, peptides containing RBD amino acids mutations have been constructed and interacted with human ACE2 by computational methods. Our results suggest that mutations in RBD amino acids K417, E484, L452, T478 and N501 are expressively increasing the
    Document: New variants of SARS-CoV-2 Alpha (B.1.1.7); Beta (B.1.351) Gamma (P.1) and Delta (B.1.617.2) quickly spread in the UK, South Africa, Brazil and India, respectively. To address whether mutations in SARS-CoV-2 RBD spike protein could affect virus infectivity, peptides containing RBD amino acids mutations have been constructed and interacted with human ACE2 by computational methods. Our results suggest that mutations in RBD amino acids K417, E484, L452, T478 and N501 are expressively increasing the affinity of this protein with human angiotensin-converting enzyme 2 (ACE2), consequently variants Alpha (B.1.1.7), Beta (B1.351), Gamma (P.1) and Delta (B.1.617.2) could be more infective in human cells compared with SARS-CoV-2 isolated in Wuhan-2019 and the Gamma and Delta variants could be the most infective among them.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date