Author: Doe, Stewart W; Seekins, Tyler Russell; Fitzpatrick, David; Blanchard, Dawsin; Sekeh, Salimeh Yasaei
Title: Adaptive County Level COVID-19 Forecast Models: Analysis and Improvement Cord-id: eipaer60 Document date: 2020_6_16
ID: eipaer60
Snippet: Accurately forecasting county level COVID-19 confirmed cases is crucial to optimizing medical resources. Forecasting emerging outbreaks pose a particular challenge because many existing forecasting techniques learn from historical seasons trends. Recurrent neural networks (RNNs) with LSTM-based cells are a logical choice of model due to their ability to learn temporal dynamics. In this paper, we adapt the state and county level influenza model, TDEFSI-LONLY, proposed in Wang et a. [l2020] to nat
Document: Accurately forecasting county level COVID-19 confirmed cases is crucial to optimizing medical resources. Forecasting emerging outbreaks pose a particular challenge because many existing forecasting techniques learn from historical seasons trends. Recurrent neural networks (RNNs) with LSTM-based cells are a logical choice of model due to their ability to learn temporal dynamics. In this paper, we adapt the state and county level influenza model, TDEFSI-LONLY, proposed in Wang et a. [l2020] to national and county level COVID-19 data. We show that this model poorly forecasts the current pandemic. We analyze the two week ahead forecasting capabilities of the TDEFSI-LONLY model with combinations of regularization techniques. Effective training of the TDEFSI-LONLY model requires data augmentation, to overcome this challenge we utilize an SEIR model and present an inter-county mixing extension to this model to simulate sufficient training data. Further, we propose an alternate forecast model, {\it County Level Epidemiological Inference Recurrent Network} (\alg{}) that trains an LSTM backbone on national confirmed cases to learn a low dimensional time pattern and utilizes a time distributed dense layer to learn individual county confirmed case changes each day for a two weeks forecast. We show that the best, worst, and median state forecasts made using CLEIR-Net model are respectively New York, South Carolina, and Montana.
Search related documents:
Co phrase search for related documents- absolute error and actual number: 1
- absolute error and additional feature: 1
- absolute error and logarithmic error: 1
- absolute error and long term network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- absolute error and long term network memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- absolute error and loss function: 1, 2
- absolute error and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- accelerate number and machine learning: 1
Co phrase search for related documents, hyperlinks ordered by date