Author: Awedat, Khalfalla; Essa, Almabrok
Title: COVID-CLNet: COVID-19 Detection with Compressive Deep Learning Approaches Cord-id: 9m4ew4ir Document date: 2020_12_3
ID: 9m4ew4ir
Snippet: One of the most serious global health threat is COVID-19 pandemic. The emphasis on improving diagnosis and increasing the diagnostic capability helps stopping its spread significantly. Therefore, to assist the radiologist or other medical professional to detect and identify the COVID-19 cases in the shortest possible time, we propose a computer-aided detection (CADe) system that uses the computed tomography (CT) scan images. This proposed boosted deep learning network (CLNet) is based on the imp
Document: One of the most serious global health threat is COVID-19 pandemic. The emphasis on improving diagnosis and increasing the diagnostic capability helps stopping its spread significantly. Therefore, to assist the radiologist or other medical professional to detect and identify the COVID-19 cases in the shortest possible time, we propose a computer-aided detection (CADe) system that uses the computed tomography (CT) scan images. This proposed boosted deep learning network (CLNet) is based on the implementation of Deep Learning (DL) networks as a complementary to the Compressive Learning (CL). We utilize our inception feature extraction technique in the measurement domain using CL to represent the data features into a new space with less dimensionality before accessing the Convolutional Neural Network. All original features have been contributed equally in the new space using a sensing matrix. Experiments performed on different compressed methods show promising results for COVID-19 detection. In addition, our novel weighted method based on different sensing matrices that used to capture boosted features demonstrates an improvement in the performance of the proposed method.
Search related documents:
Co phrase search for related documents- accurate efficient and loss function: 1
- accurate efficient and lstm short term memory: 1
- accurate efficient and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- long lstm short term memory and loss function: 1, 2, 3, 4
- long lstm short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- long lstm short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
- long lstm short term memory include and lstm short term memory: 1, 2, 3
- loss function and lstm short term memory: 1, 2, 3, 4
- loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- low dimension and machine learning: 1
- lstm short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
- lung ground glass opacity and machine learning: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date