Selected article for: "left ventricle and LV left ventricle"

Author: Hess, Annika; Derlin, Thorsten; Koenig, Tobias; Diekmann, Johanna; Wittneben, Alexander; Wang, Yong; Wester, Hans-Juergen; Ross, Tobias L; Wollert, Kai C; Bauersachs, Johann; Bengel, Frank M; Thackeray, James T
Title: Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4.
  • Cord-id: 8ohsh9bo
  • Document date: 2020_9_9
  • ID: 8ohsh9bo
    Snippet: AIMS Balance between inflammatory and reparative leucocytes allows optimal healing after myocardial infarction (MI). Interindividual heterogeneity evokes variable functional outcome complicating targeted therapy. We aimed to characterize infarct chemokine CXC-motif receptor 4 (CXCR4) expression using positron emission tomography (PET) and establish its relationship to cardiac outcome. We tested whether image-guided early CXCR4 directed therapy attenuates chronic dysfunction. METHODS AND RESULTS
    Document: AIMS Balance between inflammatory and reparative leucocytes allows optimal healing after myocardial infarction (MI). Interindividual heterogeneity evokes variable functional outcome complicating targeted therapy. We aimed to characterize infarct chemokine CXC-motif receptor 4 (CXCR4) expression using positron emission tomography (PET) and establish its relationship to cardiac outcome. We tested whether image-guided early CXCR4 directed therapy attenuates chronic dysfunction. METHODS AND RESULTS Mice (n = 180) underwent coronary ligation or sham surgery and serial PET imaging over 7 days. Infarct CXCR4 content was elevated over 3 days after MI compared with sham (%ID/g, Day 1:1.1 ± 0.2; Day 3:0.9 ± 0.2 vs. 0.6 ± 0.1, P < 0.001), confirmed by flow cytometry and histopathology. Mice that died of left ventricle (LV) rupture exhibited persistent inflammation at 3 days compared with survivors (1.2 ± 0.3 vs. 0.9 ± 0.2% ID/g, P < 0.001). Cardiac magnetic resonance measured cardiac function. Higher CXCR4 signal at 1 and 3 days independently predicted worse functional outcome at 6 weeks (rpartial = -0.4, P = 0.04). Mice were treated with CXCR4 blocker AMD3100 following the imaging timecourse. On-peak CXCR4 blockade at 3 days lowered LV rupture incidence vs. untreated MI (8% vs. 25%), and improved contractile function at 6 weeks (+24%, P = 0.01). Off-peak CXCR4 blockade at 7 days did not improve outcome. Flow cytometry analysis revealed lower LV neutrophil and Ly6Chigh monocyte content after on-peak treatment. Patients (n = 50) early after MI underwent CXCR4 PET imaging and functional assessment. Infarct CXCR4 expression in acute MI patients correlated with contractile function at time of PET and on follow-up. CONCLUSION Positron emission tomography imaging identifies early CXCR4 up-regulation which predicts acute rupture and chronic contractile dysfunction. Imaging-guided CXCR4 inhibition accelerates inflammatory resolution and improves outcome. This supports a molecular imaging-based theranostic approach to guide therapy after MI.

    Search related documents: