Author: Kemenesi, Gábor; Tóth, Gábor Endre; Bajusz, Dávid; Keserű, György M.; Terhes, Gabriella; Burián, Katalin; Zeghbib, Safia; Somogyi, Balázs A.; Jakab, Ferenc
Title: Effect of An 84-bp Deletion of the Receptor-Binding Domain on the ACE2 Binding Affinity of the SARS-CoV-2 Spike Protein: An In Silico Analysis Cord-id: fh2ugut0 Document date: 2021_1_29
ID: fh2ugut0
Snippet: SARS-CoV-2 is a recently emerged, novel human coronavirus responsible for the currently ongoing COVID-19 pandemic. Recombination is a well-known evolutionary strategy of coronaviruses, which may frequently result in significant genetic alterations, such as deletions throughout the genome. In this study we identified a co-infection with two genetically different SARS-CoV-2 viruses within a single patient sample via amplicon-based next generation sequencing in Hungary. The recessive strain contain
Document: SARS-CoV-2 is a recently emerged, novel human coronavirus responsible for the currently ongoing COVID-19 pandemic. Recombination is a well-known evolutionary strategy of coronaviruses, which may frequently result in significant genetic alterations, such as deletions throughout the genome. In this study we identified a co-infection with two genetically different SARS-CoV-2 viruses within a single patient sample via amplicon-based next generation sequencing in Hungary. The recessive strain contained an 84 base pair deletion in the receptor binding domain of the Spike protein gene and was found to be gradually displaced by a dominant non-deleterious variant over-time. We have identified the region of the RBD that is affected by the mutation, created homology models of the RBDΔ84 mutant, and based on the available experimental data and calculations, we propose that the mutation has a deteriorating effect on the binding of RBD to the ACE2 receptor, which results in the negative selection of this variant. Extending the sequencing capacity toward the discovery of emerging recombinant or deleterious strains may facilitate the early recognition of novel strains with altered phenotypic attributes and understand key elements of Spike protein evolution. Such studies may greatly contribute to future therapeutic research and general understanding of genomic processes of the virus.
Search related documents:
Co phrase search for related documents- aa position and acute respiratory syndrome: 1, 2
- aa position and loop region: 1
- accelerated rate and acute respiratory syndrome: 1, 2, 3, 4
- accessory protein and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accessory protein and loop region: 1, 2
- acid extraction and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acid extraction and low specificity: 1
- acute respiratory syndrome and lombardy region: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and long sequence: 1, 2, 3, 4, 5, 6, 7
- acute respiratory syndrome and loop element: 1, 2, 3
- acute respiratory syndrome and loop region: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute respiratory syndrome and low specificity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- long sequence and loop region: 1, 2
Co phrase search for related documents, hyperlinks ordered by date