Author: Tuan, Nguyen Huy; Mohammadi, Hakimeh; Rezapour, Shahram
Title: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative Cord-id: rso82wu4 Document date: 2020_7_11
ID: rso82wu4
Snippet: We present a mathematical model for the transmission of COVID-19 by the Caputo fractional-order derivative. We calculate the equilibrium points and the reproduction number for the model and obtain the region of the feasibility of system. By fixed point theory, we prove the existence of a unique solution. Using the generalized Adams-Bashforth-Moulton method, we solve the system and obtain the approximate solutions. We present a numerical simulation for the transmission of COVID-19 in the world, a
Document: We present a mathematical model for the transmission of COVID-19 by the Caputo fractional-order derivative. We calculate the equilibrium points and the reproduction number for the model and obtain the region of the feasibility of system. By fixed point theory, we prove the existence of a unique solution. Using the generalized Adams-Bashforth-Moulton method, we solve the system and obtain the approximate solutions. We present a numerical simulation for the transmission of COVID-19 in the world, and in this simulation, the reproduction number is obtained as [Formula: see text] which shows that the epidemic continues.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date