Author: Kananen, L.; Eriksdotter, M.; Boström, A.M.; Kivipelto, M.; Annetorp, M.; Metzner, C.; Bäck Jerlardtz, V.; Engström, M.; Johnson, P.; Lundberg, L.G.; Åkesson, E.; Sühl Öberg, C.; Hägg, S.; Religa, D.; Jylhävä, J.; Cederholm, T.
Title: Body mass index and Mini Nutritional Assessment-Short Form as predictors of in-geriatric hospital mortality in older adults with COVID-19 Cord-id: it7pm75x Document date: 2021_7_29
ID: it7pm75x
Snippet: BACKGROUND & AIMS: Overweight and obesity have been consistently reported to carry an increased risk for poorer outcomes in coronavirus disease 2019 (COVID-19) in adults. Existing reports mainly focus on in-hospital and intensive care unit mortality in patient cohorts usually not representative of the population with the highest mortality, i.e. the very old and frail patients. Accordingly, little is known about the risk patterns related to body mass and nutrition in very old patients. Our aim wa
Document: BACKGROUND & AIMS: Overweight and obesity have been consistently reported to carry an increased risk for poorer outcomes in coronavirus disease 2019 (COVID-19) in adults. Existing reports mainly focus on in-hospital and intensive care unit mortality in patient cohorts usually not representative of the population with the highest mortality, i.e. the very old and frail patients. Accordingly, little is known about the risk patterns related to body mass and nutrition in very old patients. Our aim was to assess the relationship between body mass index (BMI), nutritional status and in-geriatric hospital mortality among geriatric patients treated for COVID-19. As a reference, the analyses were performed also in patients treated for other diagnoses than COVID-19. METHODS: We analyzed up to 10,031 geriatric patients with a median age of 83 years of which 1409 (14%) were hospitalized for COVID-19 and 8622 (86%) for other diagnoses in seven geriatric hospitals in the Stockholm region, Sweden during March 2020–January 2021. Data were available in electronic hospital records. The associations between 1) BMI and 2) nutritional status, assessed using the Mini-Nutritional Assessment - Short Form (MNA-SF) scale, and short-term in-geriatric hospital mortality were performed using logistic regression. RESULTS: After adjusting for age, sex, comorbidity, polypharmacy, frailty and the wave of the pandemic (first vs. second), underweight defined as BMI<18.5 increased the risk of in-hospital mortality in COVID-19 patients (odds ratio [OR] = 2.30; confidence interval [CI] = 1.17–4.31). Overweight and obesity were not associated with in-hospital mortality. Malnutrition; i.e. MNA-SF 0–7 points, increased the risk of in-hospital mortality in patients treated for COVID-19 (OR = 2.03; CI = 1.16–3.68) and other causes (OR = 6.01; CI = 2.73–15.91). CONCLUSIONS: Our results indicate that obesity is not a risk factor for very old patients with COVID-19, but emphasize the role of underweight and malnutrition for in-hospital mortality in geriatric patients with COVID-19.
Search related documents:
Co phrase search for related documents- active cancer and acute kidney injury: 1, 2, 3
- active cancer and admission day: 1
- active cancer and logistic model: 1, 2, 3, 4, 5
- active cancer and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- active cancer and long term mortality: 1, 2
- active cancer and low number: 1, 2, 3
- acute disease and admission day: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
- acute disease and logistic model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
- acute disease and logistic model result: 1
- acute disease and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute disease and long period: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute disease and long term mortality: 1, 2, 3, 4, 5, 6, 7, 8
- acute disease and low body weight: 1, 2
- acute disease and low number: 1, 2, 3, 4, 5, 6, 7, 8
- acute kidney injury and admission day: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
- acute kidney injury and admission record: 1
- acute kidney injury and logistic model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- acute kidney injury and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute kidney injury and long period: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date