Author: Wei, Ping; Fan, Keqiang; Chen, Hao; Ma, Liang; Huang, Changkang; Tan, Lei; Xi, Dong; Li, Chunmei; Liu, Ying; Cao, Aoneng; Lai, Luhua
Title: The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase() Cord-id: 67brxejx Document date: 2006_1_20
ID: 67brxejx
Snippet: The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1–7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0 μM by analytical ultracentrifugation method. The N-finger frag
Document: The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1–7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0 μM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a K(i) of 2.20 mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.
Search related documents:
Co phrase search for related documents- acid inhibitor and activity inhibition: 1, 2, 3
- acid inhibitor and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- active form and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- active site and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- activity dependent and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- activity dependent assay and acute respiratory syndrome: 1, 2
- activity dimer and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- activity inhibition and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- activity inhibition and little inhibition activity: 1
- activity test and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Co phrase search for related documents, hyperlinks ordered by date