Author: Elemike, Elias Emeka; Dare, Enock Olugbenga; Samuel, Inyang David; Onwuka, Jude Chinedu
Title: 2-Imino-(3,4-dimethoxybenzyl) ethanesulfonic acid Schiff base anchored silver nanocomplex mediated by sugarcane juice and their antibacterial activities Cord-id: 92fpf4nj Document date: 2016_2_2
ID: 92fpf4nj
Snippet: In this present investigation, 2-imino-(3,4-dimethoxybenzyl)ethane sulphonic acid was anchored on a silver nanoparticle mediated by sugarcane sap. The Schiff base was synthesized from 2-aminoethanesulphonic acid and 3,4-dimethoxybenzaldehyde under lemon juice catalyzed conditions while the nanoparticles were obtained by careful stirring of sugarcane sap and 1 mM AgNO(3) in the ratio of 1:10 respectively at room temperature. The resulting nanocomplex was formed by gentle heating and stirring of t
Document: In this present investigation, 2-imino-(3,4-dimethoxybenzyl)ethane sulphonic acid was anchored on a silver nanoparticle mediated by sugarcane sap. The Schiff base was synthesized from 2-aminoethanesulphonic acid and 3,4-dimethoxybenzaldehyde under lemon juice catalyzed conditions while the nanoparticles were obtained by careful stirring of sugarcane sap and 1 mM AgNO(3) in the ratio of 1:10 respectively at room temperature. The resulting nanocomplex was formed by gentle heating and stirring of the silver nanoparticles solution and the ligand at a temperature of about 80 °C for 3 h. The ligand, nanoparticles and nanocomplex were characterized using UV–vis spectrophotometer, scanning electron microscope, FT-IR and XRD machines. From the UV–vis results, surface plasmon bands (SPBs) were observed at 475 nm for the nanoparticle within 1 h of the reaction and 450 nm for the nanocomplex. The ligand exhibited absorption bands at 310 nm, 280 nm and 230 nm which are due to π-electron transitions within the chromophores. The strikingly broad nature of the SPBs especially in the nanoparticles revealed that the particles are kinetically favored, nucleate easily and are polydispersed and the blue shift observed in the nanocomplex suggested further reduction in the particle size therefore giving us a clue on how to tailor the products by tuning the raw materials. From the scanning electron micrographs, the morphologies and growth mechanisms revealed oriented attachment for the nanoparticles onwards digestive ripening for the nanocomplex. All the synthesized materials proved to be potential antibacterial agents as they showed great inhibition to the growth of some bacterial strains with the activity enhanced in the nanocomplex.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date