Author: Chintalapudi, Nalini; Battineni, Gopi; Amenta, Francesco
Title: Sentimental Analysis of COVID-19 Tweets Using Deep Learning Models Cord-id: 9kmzzvjx Document date: 2021_4_1
ID: 9kmzzvjx
Snippet: The novel coronavirus disease (COVID-19) is an ongoing pandemic with large global attention. However, spreading false news on social media sites like Twitter is creating unnecessary anxiety towards this disease. The motto behind this study is to analyses tweets by Indian netizens during the COVID-19 lockdown. The data included tweets collected on the dates between 23 March 2020 and 15 July 2020 and the text has been labelled as fear, sad, anger, and joy. Data analysis was conducted by Bidirectio
Document: The novel coronavirus disease (COVID-19) is an ongoing pandemic with large global attention. However, spreading false news on social media sites like Twitter is creating unnecessary anxiety towards this disease. The motto behind this study is to analyses tweets by Indian netizens during the COVID-19 lockdown. The data included tweets collected on the dates between 23 March 2020 and 15 July 2020 and the text has been labelled as fear, sad, anger, and joy. Data analysis was conducted by Bidirectional Encoder Representations from Transformers (BERT) model, which is a new deep-learning model for text analysis and performance and was compared with three other models such as logistic regression (LR), support vector machines (SVM), and long-short term memory (LSTM). Accuracy for every sentiment was separately calculated. The BERT model produced 89% accuracy and the other three models produced 75%, 74.75%, and 65%, respectively. Each sentiment classification has accuracy ranging from 75.88–87.33% with a median accuracy of 79.34%, which is a relatively considerable value in text mining algorithms. Our findings present the high prevalence of keywords and associated terms among Indian tweets during COVID-19. Further, this work clarifies public opinion on pandemics and lead public health authorities for a better society.
Search related documents:
Co phrase search for related documents- logistic regression and long short term: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44
- logistic regression and long short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- logistic regression and lr logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65
- logistic regression and lstm model: 1, 2
- logistic regression and machine learn: 1
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- logistic regression and machine learning approach: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- logistic regression and machine learning people: 1, 2
- logistic regression model and long short: 1, 2, 3, 4, 5, 6
- logistic regression model and long short term: 1, 2, 3, 4, 5
- logistic regression model and lr logistic regression: 1, 2, 3, 4, 5, 6, 7
- logistic regression model and machine learn: 1
- logistic regression model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55
- logistic regression model and machine learning approach: 1, 2, 3, 4
- long short and lr logistic regression: 1, 2, 3, 4, 5, 6, 7
- long short and lstm model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short and lstm network model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- long short and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short and machine learning approach: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Co phrase search for related documents, hyperlinks ordered by date