Author: Lorenzoni, Giulia; Sella, Nicolò; Boscolo, Annalisa; Azzolina, Danila; Bartolotta, Patrizia; Pasin, Laura; Pettenuzzo, Tommaso; De Cassai, Alessandro; Baratto, Fabio; Toffoletto, Fabio; De Rosa, Silvia; Fullin, Giorgio; Peta, Mario; Rosi, Paolo; Polati, Enrico; Zanella, Alberto; Grasselli, Giacomo; Pesenti, Antonio; Navalesi, Paolo; Gregori, Dario
Title: COVID-19 ICU mortality prediction: a machine learning approach using SuperLearner algorithm Cord-id: 99ukjq4g Document date: 2021_9_1
ID: 99ukjq4g
Snippet: BACKGROUND: Since the beginning of coronavirus disease 2019 (COVID-19), the development of predictive models has sparked relevant interest due to the initial lack of knowledge about diagnosis, treatment, and prognosis. The present study aimed at developing a model, through a machine learning approach, to predict intensive care unit (ICU) mortality in COVID-19 patients based on predefined clinical parameters. RESULTS: Observational multicenter cohort study. All COVID-19 adult patients admitted to
Document: BACKGROUND: Since the beginning of coronavirus disease 2019 (COVID-19), the development of predictive models has sparked relevant interest due to the initial lack of knowledge about diagnosis, treatment, and prognosis. The present study aimed at developing a model, through a machine learning approach, to predict intensive care unit (ICU) mortality in COVID-19 patients based on predefined clinical parameters. RESULTS: Observational multicenter cohort study. All COVID-19 adult patients admitted to 25 ICUs belonging to the VENETO ICU network (February 28th 2020-april 4th 2021) were enrolled. Patients admitted to the ICUs before 4th March 2021 were used for model training (“training setâ€), while patients admitted after the 5th of March 2021 were used for external validation (“test set 1â€). A further group of patients (“test set 2â€), admitted to the ICU of IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan, was used for external validation. A SuperLearner machine learning algorithm was applied for model development, and both internal and external validation was performed. Clinical variables available for the model were (i) age, gender, sequential organ failure assessment score, Charlson Comorbidity Index score (not adjusted for age), Palliative Performance Score; (ii) need of invasive mechanical ventilation, non-invasive mechanical ventilation, O(2) therapy, vasoactive agents, extracorporeal membrane oxygenation, continuous venous-venous hemofiltration, tracheostomy, re-intubation, prone position during ICU stay; and (iii) re-admission in ICU. One thousand two hundred ninety-three (80%) patients were included in the “training setâ€, while 124 (8%) and 199 (12%) patients were included in the “test set 1†and “test set 2,†respectively. Three different predictive models were developed. Each model included different sets of clinical variables. The three models showed similar predictive performances, with a training balanced accuracy that ranged between 0.72 and 0.90, while the cross-validation performance ranged from 0.75 to 0.85. Age was the leading predictor for all the considered models. CONCLUSIONS: Our study provides a useful and reliable tool, through a machine learning approach, for predicting ICU mortality in COVID-19 patients. In all the estimated models, age was the variable showing the most important impact on mortality. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s44158-021-00002-x.
Search related documents:
Co phrase search for related documents- absolute percentage and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7
- absolute percentage and logistic regression: 1, 2, 3, 4, 5, 6
- absolute percentage and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- absolute percentage and machine learning approach: 1
- acute respiratory syndrome and additional file: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and admission record: 1, 2, 3
- acute respiratory syndrome and admission stay: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and local investigator: 1
- acute respiratory syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and lombardy region: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and low number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and machine learning approach: 1, 2, 3, 4, 5, 6
- acute respiratory syndrome coronavirus and additional file: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute respiratory syndrome coronavirus and admission record: 1
- acute respiratory syndrome coronavirus and admission stay: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome coronavirus and local investigator: 1
- acute respiratory syndrome coronavirus and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome coronavirus and lombardy region: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
Co phrase search for related documents, hyperlinks ordered by date