Author: Karki, Nischal; Verma, Niraj; Trozzi, Francesco; Tao, Peng; Kraka, Elfi; Zoltowski, Brian
Title: Predicting Potential SARS-COV-2 Drugs—In Depth Drug Database Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking Cord-id: idexxu3g Document date: 2021_2_4
ID: idexxu3g
Snippet: Severe Acute Respiratory Syndrome Corona Virus 2 has altered life on a global scale. A concerted effort from research labs around the world resulted in the identification of potential pharmaceutical treatments for CoVID-19 using existing drugs, as well as the discovery of multiple vaccines. During an urgent crisis, rapidly identifying potential new treatments requires global and cross-discipline cooperation, together with an enhanced open-access research model to distribute new ideas and leads.
Document: Severe Acute Respiratory Syndrome Corona Virus 2 has altered life on a global scale. A concerted effort from research labs around the world resulted in the identification of potential pharmaceutical treatments for CoVID-19 using existing drugs, as well as the discovery of multiple vaccines. During an urgent crisis, rapidly identifying potential new treatments requires global and cross-discipline cooperation, together with an enhanced open-access research model to distribute new ideas and leads. Herein, we introduce an application of a deep neural network based drug screening method, validating it using a docking algorithm on approved drugs for drug repurposing efforts, and extending the screen to a large library of 750,000 compounds for de novo drug discovery effort. The results of large library screens are incorporated into an open-access web interface to allow researchers from diverse fields to target molecules of interest. Our combined approach allows for both the identification of existing drugs that may be able to be repurposed and de novo design of ACE2-regulatory compounds. Through these efforts we demonstrate the utility of a new machine learning algorithm for drug discovery, SSnet, that can function as a tool to triage large molecular libraries to identify classes of molecules with possible efficacy.
Search related documents:
Co phrase search for related documents- absolute deviation and acute respiratory: 1
- absolute deviation and acute respiratory syndrome: 1
- acceptance rate and acute respiratory: 1, 2, 3, 4
- acceptance rate and acute respiratory syndrome: 1, 2, 3, 4
- accurate fast and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- accurate fast and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- ace inhibitor and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- ace inhibitor and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- action possible mechanism and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- action possible mechanism and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- active ligand and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- active ligand and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- activity study and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- activity study and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and additional role: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- acute respiratory and local minima: 1
- acute respiratory syndrome and additional role: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- acute respiratory syndrome and local minima: 1
Co phrase search for related documents, hyperlinks ordered by date