Selected article for: "activation dependent and acute sars cov respiratory syndrome coronavirus"

Author: Clay, Candice C; Donart, Nathan; Fomukong, Ndingsa; Knight, Jennifer B; Overheim, Katie; Tipper, Jennifer; Van Westrienen, Jesse; Hahn, Fletcher; Harrod, Kevin S
Title: Severe acute respiratory syndrome-coronavirus infection in aged nonhuman primates is associated with modulated pulmonary and systemic immune responses
  • Cord-id: 9yrvjlpx
  • Document date: 2014_3_19
  • ID: 9yrvjlpx
    Snippet: BACKGROUND: Many respiratory viruses disproportionately impact the elderly. Likewise, advanced age correlated with more adverse disease outcomes following severe acute respiratory syndrome coronavirus (SARS-CoV) infection in humans. We used an aged African green monkey SARS-CoV infection model to better understand age-related mechanisms of increased susceptibility to viral respiratory infections. Nonhuman primates are critical translational models for such research given their similarities to hu
    Document: BACKGROUND: Many respiratory viruses disproportionately impact the elderly. Likewise, advanced age correlated with more adverse disease outcomes following severe acute respiratory syndrome coronavirus (SARS-CoV) infection in humans. We used an aged African green monkey SARS-CoV infection model to better understand age-related mechanisms of increased susceptibility to viral respiratory infections. Nonhuman primates are critical translational models for such research given their similarities to humans in immune-ageing as well as lung structure. RESULTS: Significant age- and infection-dependent differences were observed in both systemic and mucosal immune compartments. Peripheral lymphocytes, specifically CD8 T and B cells were significantly lower in aged monkeys pre- and post- SARS-CoV infection, while neutrophil and monocyte numbers were not impacted by age or infection status. Serum proinflammatory cytokines were similar in both age groups, whereas significantly lower levels of IL-1beta, IL-18, IL-6, IL-12 and IL-15 were detected in the lungs of SARS-CoV-infected aged monkeys at either 5 or 10 days post infection. Total lung leukocyte numbers and relative frequency of CD8 T cells, B cells, macrophages and dendritic cells were greatly reduced in the aged host during SARS-CoV infection, despite high levels of chemoattractants for many of these cells in the aged lung. Dendritic cells and monocytes/macrophages showed age-dependent differences in activation and chemokine receptor profiles, while the CD8 T cell and B cell responses were significantly reduced in the aged host. In examination of viral titers, significantly higher levels of SARS-CoV were detected in the nasal swabs early, at day 1 post infection, in aged as compared to juvenile monkeys, but virus levels were only slightly higher in aged animals by day 3. Although there was a trend of higher titers in respiratory tissues at day 5 post infection, this did not reach statistical significance and virus was cleared from all animals by day 10, regardless of age. CONCLUSIONS: This study provides unique insight into how several parameters of the systemic and mucosal immune response to SARS-CoV infection are significantly modulated by age. These immune differences may contribute to deficient immune function and the observed trend of higher SARS-CoV replication in aged nonhuman primates.

    Search related documents:
    Co phrase search for related documents
    • activation marker and adaptive response: 1
    • activation status and acute sars cov respiratory syndrome coronavirus: 1, 2
    • activation status and adaptive response: 1, 2
    • acute sars cov respiratory syndrome coronavirus and adaptive response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute sars cov respiratory syndrome coronavirus and additional file: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • acute sars cov respiratory syndrome coronavirus and additional sampling: 1, 2, 3
    • adaptive response and additional file: 1, 2