Author: Kao, Chi-Fei; Chang, Hui-Wen
                    Title: Investigation of the Role of the Spike Protein in Reversing the Virulence of the Highly Virulent Taiwan Porcine Epidemic Diarrhea Virus Pintung 52 Strains and Its Attenuated Counterpart  Cord-id: 9dn5c01n  Document date: 2019_12_30
                    ID: 9dn5c01n
                    
                    Snippet: Porcine epidemic diarrhea virus (PEDV) has continuously caused severe economic losses to the global swine industries; however, no successful vaccine against PEDV has been developed. In this study, we generated four autologous recombinant viruses, including the highly virulent iPEDVPT-P5, attenuated iPEDVPT-P96, and two chimeric viruses (iPEDVPT-P5-96S and iPEDVPT-P96-5S) with the reciprocally exchanged spike (S) gene, to study the role of the S gene in PEDV pathogenesis. A deeper understanding o
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Porcine epidemic diarrhea virus (PEDV) has continuously caused severe economic losses to the global swine industries; however, no successful vaccine against PEDV has been developed. In this study, we generated four autologous recombinant viruses, including the highly virulent iPEDVPT-P5, attenuated iPEDVPT-P96, and two chimeric viruses (iPEDVPT-P5-96S and iPEDVPT-P96-5S) with the reciprocally exchanged spike (S) gene, to study the role of the S gene in PEDV pathogenesis. A deeper understanding of PEDV attenuation will aid in the rational design of a live attenuated vaccine (LAV) using reverse genetics system. Our results showed that replacing the S gene from the highly virulent iPEDVPT-P5 led to complete restoration of virulence of the attenuated iPEDVPT-P96, with nearly identical viral shedding, diarrhea pattern, and mortality rate as the parental iPEDVPT-P5. In contrast, substitution of the S gene with that from the attenuated iPEDVPT-P96 resulted in partial attenuation of iPEDVPT-P5, exhibiting similar viral shedding and diarrhea patterns as the parental iPEDVPT-P96 with slightly severe histological lesions and higher mortality rate. Collectively, our data confirmed that the attenuation of the PEDVPT-P96 virus is primarily attributed to mutations in the S gene. However, mutation in S gene alone could not fully attenuate the virulence of iPEDVPT-P5. Gene (s) other than S gene might also play a role in determining virulence.
 
  Search related documents: 
                                Co phrase  search for related documents- acid extraction and lymph node: 1
  - additional time and lymph node: 1, 2, 3, 4, 5
  - long term surveillance and low mortality: 1
  - low mortality and lymph node: 1, 2
  - low mortality rate and lymph node: 1
  - low virulent and lymph node: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date