Selected article for: "anti SARS cov and homology model"

Author: Solo, Peter; Maria doss, Arokia doss
Title: Potential inhibitors of SARS-CoV-2 (COVID 19) spike protein of the and delta plus variant: In silico studies of medici delta nal plants of North-East India
  • Cord-id: e510h0ob
  • Document date: 2021_10_22
  • ID: e510h0ob
    Snippet: Phytochemicals of 38 Medicinal plants of North-East India, with anti-viral, anti-oxidant or anti-bacterial properties were screened for properties of drug likeness. 231 phytochemicals were screened with LIPINSKI rule of five to obtain 131 candidates, which were further screened with SWISS-ADME, to obtain 50 phytochemicals. These phytochemicals were docked with the spike protein of the Delta variant (B.1.617.2) and Delta-Plus (AY.1) variant of SARS-CoV-2 using Autodock Vina and MOE 09. The target
    Document: Phytochemicals of 38 Medicinal plants of North-East India, with anti-viral, anti-oxidant or anti-bacterial properties were screened for properties of drug likeness. 231 phytochemicals were screened with LIPINSKI rule of five to obtain 131 candidates, which were further screened with SWISS-ADME, to obtain 50 phytochemicals. These phytochemicals were docked with the spike protein of the Delta variant (B.1.617.2) and Delta-Plus (AY.1) variant of SARS-CoV-2 using Autodock Vina and MOE 09. The target proteins were constructed by homology modeling using Swiss-Model. Hydroxychloroquine, taken as a standard in docking analysis, exhibited a binding energy of −6.5 kcal/mol and −6.1 kcal/mol with respect to the Delta variant and Delta-Plus variant respectively. Among the 50 docked results most flavones showed very good docking scores. 3,5,8-Trimethoxy-6,7,4,5-bis(methylenedioxy)flavone, a Poly-Methoxyflavone, produced a highest docking score of −8.7 kcal/mol with respect to both the spike protein targets. Poly-Methoxyflavones and Poly-Ethoxyflavones exhibited good binding affinity for the target spike protein of SARS-CoV-2, and can be potential anti-viral drug candidates against the existing Delta variant of the SARS-CoV-2.

    Search related documents: