Author: Doanvo, Anhvinh; Qian, Xiaolu; Ramjee, Divya; Piontkivska, Helen; Desai, Angel; Majumder, Maimuna
Title: Machine Learning Maps Research Needs in COVID-19 Literature Cord-id: 9w6zt778 Document date: 2020_9_16
ID: 9w6zt778
Snippet: As of August 2020, thousands of COVID-19 (coronavirus disease 2019) publications have been produced. Manual assessment of their scope is an overwhelming task, and shortcuts through metadata analysis (e.g., keywords) assume that studies are properly tagged. However, machine learning approaches can rapidly survey the actual text of publication abstracts to identify research overlap between COVID-19 and other coronaviruses, research hotspots, and areas warranting exploration. We propose a fast, sca
Document: As of August 2020, thousands of COVID-19 (coronavirus disease 2019) publications have been produced. Manual assessment of their scope is an overwhelming task, and shortcuts through metadata analysis (e.g., keywords) assume that studies are properly tagged. However, machine learning approaches can rapidly survey the actual text of publication abstracts to identify research overlap between COVID-19 and other coronaviruses, research hotspots, and areas warranting exploration. We propose a fast, scalable, and reusable framework to parse novel disease literature. When applied to the COVID-19 Open Research Dataset (CORD-19), dimensionality reduction suggests that COVID-19 studies to date are primarily clinical-, modeling- or field-based, in contrast to the vast quantity of laboratory-driven research for other (non-COVID-19) coronavirus diseases. Furthermore, topic modeling indicates that COVID-19 publications have focused on public health, outbreak reporting, clinical care, and testing for coronaviruses, as opposed to the more limited number focused on basic microbiology, including pathogenesis and transmission.
Search related documents:
Co phrase search for related documents- abstract text and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- abstract text and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- abstract text and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- acute respiratory and additional detail: 1
- acute respiratory and adenovirus vector: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and adenovirus vector express: 1
- acute respiratory and low projection: 1
- acute respiratory syndrome and additional detail: 1
- acute respiratory syndrome and adenovirus vector: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute respiratory syndrome and adenovirus vector express: 1
- acute respiratory syndrome and low projection: 1
- acute respiratory syndrome coronavirus and additional detail: 1
- acute respiratory syndrome coronavirus and adenovirus vector: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute respiratory syndrome coronavirus and adenovirus vector express: 1
Co phrase search for related documents, hyperlinks ordered by date