Selected article for: "IFN induction and SARS infection"

Author: Banerjee, Arinjay; El-Sayes, Nader; Budylowski, Patrick; Richard, Daniel; Maan, Hassaan; Aguiar, Jennifer A.; Baid, Kaushal; D’Agostino, Michael R.; Ang, Jann Catherine; Tremblay, Benjamin J.-M.; Afkhami, Sam; Karimzadeh, Mehran; Irving, Aaron T.; Yip, Lily; Ostrowski, Mario; Hirota, Jeremy A.; Kozak, Robert; Capellini, Terence D.; Miller, Matthew S.; Wang, Bo; Mubareka, Samira; McGeer, Allison J.; McArthur, Andrew G.; Doxey, Andrew C.; Mossman, Karen
Title: Experimental and natural evidence of SARS-CoV-2 infection-induced activation of type I interferon responses
  • Cord-id: 9wqs3pr3
  • Document date: 2020_10_16
  • ID: 9wqs3pr3
    Snippet: Type I interferons (IFNs) are our first line of defence against a virus. Protein over-expression studies have suggested the ability of SARS-CoV-2 proteins to block IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wildtype SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are l
    Document: Type I interferons (IFNs) are our first line of defence against a virus. Protein over-expression studies have suggested the ability of SARS-CoV-2 proteins to block IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wildtype SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are lacking. Here we demonstrate that SARS-CoV-2 infection induces a mild type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Our data demonstrate that SARS-CoV-2 is not adept in blocking type I IFN responses and provide support for ongoing IFN clinical trials.

    Search related documents:
    Co phrase search for related documents
    • activation phosphorylation and acute respiratory distress syndrome: 1, 2
    • activator signal transducer and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
    • acute respiratory distress syndrome and additional study: 1, 2, 3, 4, 5, 6, 7